EXERCISES 1 (INTERSECTION THEORY)

Let A be a noetherian commutative ring with unit, and M a finitely generated A-module.

Exercise 1. The length function is additive.
Exercise 2. The length of any maximal (i.e. saturated) chain of submodules of M is equal to the length of M.

A prime \mathfrak{p} of A is associated with M if there is an element $m \in M$ such that $\mathfrak{p}=\operatorname{Ann}(m)=\{x \in A \mid x m=0\}$. We write $\operatorname{Ass}(M)$ for the set of associated primes of M.

Exercise 3. (i) We have $\mathfrak{p} \in \operatorname{Ass}(M)$ if and only if M contains a submodule isomorphic to A / \mathfrak{p}.
(ii) Let I be a maximal element of the set $\{\operatorname{Ann}(m) \mid m \in M-\{0\}\}$. Then I is a prime ideal.
(iii) We have $M=0$ if and only if $\operatorname{Ass}(M)=\varnothing$.
(iv) Let \mathfrak{p} be a prime of A. Then $\operatorname{Ass}(A / \mathfrak{p})=\{\mathfrak{p}\}$.

Exercise 4. Consider an exact sequence of finitely generated A-modules

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

Then $\operatorname{Ass}\left(M^{\prime}\right) \subset \operatorname{Ass}(M) \subset \operatorname{Ass}\left(M^{\prime}\right) \cup \operatorname{Ass}\left(M^{\prime \prime}\right)$.
Exercise 5. There is a chain of submodules

$$
0=M_{0} \subsetneq M_{1} \subsetneq \cdots \subsetneq M_{n}=M
$$

such that $M_{i} / M_{i-1} \simeq A / \mathfrak{p}_{i}$ with \mathfrak{p}_{i} prime, for $i=1, \cdots, n$. We have

$$
\operatorname{Ass}(M) \subset\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{n}\right\}
$$

Exercise 6. Assume that A is local. Then the following are equivalent
(i) $l_{A}(M)<\infty$.
(ii) There is $n \in \mathbb{N}$ such that $\left(\mathfrak{m}_{A}\right)^{n} M=0$.
(iii) We have $\operatorname{dim} M \leq 0$.

Exercise 7. Consider an exact sequence of finitely generated A-modules

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

Then $\operatorname{Supp}(M)=\operatorname{Supp}\left(M^{\prime}\right) \cup \operatorname{Supp}\left(M^{\prime \prime}\right)$.
Exercise 8. Show that the primes \mathfrak{p}_{i} of Exercise 5 belong to $\operatorname{Supp}(M)$.
Exercise 9. Let $\mathfrak{p} \in \operatorname{Spec} A$. We view $\operatorname{Spec} A_{\mathfrak{p}}$ as a subset of $\operatorname{Spec} A$. Then

$$
\operatorname{Ass}_{A_{\mathfrak{p}}}\left(M_{\mathfrak{p}}\right)=\left(\operatorname{Spec} A_{\mathfrak{p}}\right) \cap \operatorname{Ass}(M) .
$$

Exercise 10. We have $\operatorname{Ass}(M) \subset \operatorname{Supp}(M)$, and these sets have the same minimal elements.

Exercise 11. The set $\operatorname{Ass}(M)$ is finite, and so is the set of minimal primes in $\operatorname{Supp}(M)$.

EXERCISES 2 (INTERSECTION THEORY)

Exercise 1. When \mathcal{F} is a coherent \mathcal{O}_{X}-module, we define

$$
\operatorname{Ass}(\mathcal{F})=\left\{x \in X \mid \mathfrak{m}_{x} \in \operatorname{Ass}_{\mathcal{O}_{X, x}}\left(\mathcal{F}_{x}\right)\right\}
$$

(Here \mathfrak{m}_{x} denotes the maximal ideal of the local ring $\mathcal{O}_{X, x}$.)
A closed embedding $Z \rightarrow X$ is called locally principal if there is a covering by open affine subschemes $U_{i}=\operatorname{Spec} A_{i}$ and elements $s_{i} \in A_{i}$ such that $Z \cap U_{i}=$ $\operatorname{Spec}\left(A_{i} / s_{i} A_{i}\right)$.
(i) If $X=\operatorname{Spec} A$, and $M=H^{0}(X, \mathcal{F})$, show that $\operatorname{Ass}(M)=\operatorname{Ass}(\mathcal{F})$.
(ii) Show that a closed embedding $D \rightarrow X$ is an effective Cartier divisor if and only if:

- $D \rightarrow X$ is locally principal,

$$
- \text { and } D \cap \operatorname{Ass}\left(\mathcal{O}_{X}\right)=\varnothing .
$$

(iii) Let $f: Y \rightarrow X$ be a morphism, and $Z \rightarrow X$ a locally principal closed embedding. Then show that $f^{-1} Z \rightarrow Y$ is a locally principal closed embedding.
(iv) Let $f: Y \rightarrow X$ be a morphism, and $D \rightarrow X$ an effective Cartier divisor. Show that $f^{-1} D \rightarrow Y$ is an effective Cartier divisor if and only if $f\left(\operatorname{Ass}\left(\mathcal{O}_{Y}\right)\right) \cap D=\varnothing$.
(v) Assume that f is flat. Show that $f\left(\operatorname{Ass}\left(\mathcal{O}_{Y}\right)\right) \subset \operatorname{Ass}\left(\mathcal{O}_{X}\right)$.
(vi) Explain how we can reprove the lemma concerning pull-backs of effective Cartier divisors.

Exercise 2. (i) Let M be a finitely generated A-module (A noetherian). Show that the following morphism is injective:

$$
M \rightarrow \bigoplus_{\mathfrak{p} \in \operatorname{Ass}(M)} M_{\mathfrak{p}}
$$

Let X be a variety.
(ii) Show that every generic point of X is in $\operatorname{Ass}\left(\mathcal{O}_{X}\right)$.
(iii) Show that X is reduced if and only if :

- for every generic point $x \in X$, the ring $\mathcal{O}_{X, x}$ is reduced,
- and $\operatorname{Ass}\left(\mathcal{O}_{X}\right)$ is the set of generic points.

Exercise 3. Let us denote by P the closed point $0 \in \mathbb{A}_{k}^{2}=\operatorname{Spec} k[x, y]$, that is, the integral closed subscheme defined by the ideal (x, y). Find closed subschemes Z_{1}, Z_{2} of \mathbb{A}_{k}^{2} such that

$$
\left[Z_{1}\right]=\left[Z_{2}\right]=3[P] \in \mathcal{Z}\left(\mathbb{A}_{k}^{2}\right)
$$

but $Z_{1} \not \nsim Z_{2}$ as schemes (and thus as closed subschemes of \mathbb{A}_{k}^{2}).
(more exercises next page)

Exercise 4. (i) Let $f: Y \rightarrow X$ be a closed immersion. Show that f is an isomorphism if and only if there is an open subscheme U of X containing $\operatorname{Ass}\left(\mathcal{O}_{X}\right)$ such that $Y \cap U \rightarrow U$ is an isomorphism.
(ii) Find a closed immersion $Y \rightarrow X$ and an open dense subscheme U of X such that $Y \cap U \rightarrow U$ is an isomorphism (and thus $[Y]=[X] \in \mathcal{Z}(X)$), but $Y \not \approx X$.

Exercise 5. Let $R=k[x, y, z] /(z x, z y)$ and $X=\operatorname{Spec} R$. Let D be the closed subscheme of X defined by $(z-x)$.
(i) Show that $D \rightarrow X$ is an effective Cartier divisor.
(ii) What is the multiplicity m_{i} of X at each irreducible component X_{i} of X ?
(iii) Compare $[D]$ and $\sum_{i} m_{i}\left[D \cap X_{i}\right]$ in $\mathcal{Z}(X)$.
(iv) Is this compatible with Proposition 1.3.5?

Exercise 6. Prove the snake lemma: A commutative diagram of A-modules

with exact rows induces a long exact sequence of A-modules

$$
0 \rightarrow \operatorname{ker} \varphi^{\prime} \rightarrow \operatorname{ker} \varphi \rightarrow \operatorname{ker} \varphi^{\prime \prime} \rightarrow \operatorname{coker} \varphi^{\prime} \rightarrow \operatorname{coker} \varphi \rightarrow \operatorname{coker} \varphi^{\prime \prime} \rightarrow 0
$$

Exercise 7. Prove the going-down theorem: If $Y \rightarrow X$ is flat, then every irreducible component of Y dominates an irreducible component of X.

Exercise 8. Let $f: Y \rightarrow X$ be a flat morphism, with X irreducible and Y equidimensional. Show that f has relative dimension $\operatorname{dim} Y-\operatorname{dim} X$.

Exercise 9. Let $f: Y \rightarrow X$ be a finite morphism such that the \mathcal{O}_{X}-module $f_{*} \mathcal{O}_{Y}$ is locally free of rank $d>0$. Show that f is flat of relative dimension 0 , and that $f_{*} \circ f^{*}$ is multiplication with d on $\mathcal{Z}(X)$.

EXERCISES 3 (INTERSECTION THEORY)

Exercise 1. We will view $\mathbb{A}^{1}=\operatorname{Spec} k[t]$ as the open complement of ∞ in \mathbb{P}^{1}. This defines an element $t \in k\left(\mathbb{P}^{1}\right)$ such that $\operatorname{div} t=[0]-[\infty] \in \mathcal{Z}\left(\mathbb{P}^{1}\right)$.
(i) Let Z be an integral variety and $f: Z \rightarrow \mathbb{P}^{1}$ a morphism whose image is not contained in $\{0, \infty\}$. Denote by $f^{*} t$ the image of t under the induced morphism $k\left[t, t^{-1}\right] \rightarrow k(Z)$. Show that

$$
\operatorname{div} f^{*} t=\left[f^{-1} 0\right]-\left[f^{-1} \infty\right] \in \mathcal{Z}(Z)
$$

(ii) Let X be an integral variety, and $\varphi \in k(X)^{\times}$. Show that there is an integral closed subscheme Z of $X \times_{k} \mathbb{P}^{1}$ such that $p: Z \rightarrow X$ is birational, the image of $f: Z \rightarrow \mathbb{P}^{1}$ is not contained in $\{0, \infty\}$, and

$$
\operatorname{div} \varphi=p_{*} \circ \operatorname{div} f^{*} t \in \mathcal{Z}(X)
$$

(iii) Let X be a variety. Let $\mathcal{Z}\left(X ; \mathbb{P}^{1}\right)$ be the set of integral closed subschemes Z of $X \times{ }_{k} \mathbb{P}^{1}$, such that the morphism $f: Z \rightarrow \mathbb{P}^{1}$ is dominant. For $\star \in\{0, \infty\}$, show that $f^{-1} \star$ may be identified to a closed subscheme of X, that will be denoted by $Z(\star)$.
(iv) Let X be a variety. Show that the subgroup of rationally trivial classes $\mathcal{R}(X) \subset \mathcal{Z}(X)$ is generated by the elements $[Z(0)]-[Z(\infty)]$, where Z runs over $\mathcal{Z}\left(X ; \mathbb{P}^{1}\right)$.

Exercise 2. Let X be an integral variety, and \mathcal{L} an invertible \mathcal{O}_{X}-module.
(i) Show that we have a correspondence
$\left\{\begin{array}{l}\text { Integral closed subschemes } Z \subset \mathbb{P}(\mathcal{L} \oplus 1), \\ \text { with } Z \not \subset \mathbb{P}(1), Z \not \subset \mathbb{P}(\mathcal{L}), \\ \text { and } Z \rightarrow X \text { birational. }\end{array}\right\} \longleftrightarrow\left\{\begin{array}{l}\text { regular meromorphic } \\ \text { sections of } \mathcal{L} .\end{array}\right\}$
(ii) Let s be a regular meromorphic section of \mathcal{L}, and $Z \subset \mathbb{P}(1 \oplus \mathcal{L})$ the corresponding closed subscheme, with morphism $p: Z \rightarrow X$. Show that

$$
\operatorname{div}_{p^{*} \mathcal{L}}\left(p^{*} s\right)=[Z \cap \mathbb{P}(1)]-[Z \cap \mathbb{P}(\mathcal{L})] \in \mathcal{Z}(Z)
$$

(iii) Show that $Z \cap \mathbb{P}(1)$ (resp. $Z \cap \mathbb{P}(\mathcal{L})$) may be viewed as a closed subscheme $Z(1)$ (resp. $Z(\mathcal{L}))$ of X, and that we have

$$
\operatorname{div}_{\mathcal{L}}(s)=p_{*}[Z \cap \mathbb{P}(1)]-p_{*}[Z \cap \mathbb{P}(\mathcal{L})]=[Z(1)]-[Z(\mathcal{L})] \in \mathcal{Z}(X)
$$

Exercise 3. Prove directly (that is, without using Chapter 3 of the lecture) Weil's reciprocity law: For any $\varphi \in k\left(\mathbb{P}^{1}\right)^{\times}$, we have

$$
\operatorname{deg} \circ \operatorname{div} \varphi=0
$$

Exercise 4. Let $i: D \rightarrow X$ be an effective Cartier divisor, $f: X \rightarrow S$ a flat morphism with a relative dimension. Assume that $f \circ i: D \rightarrow S$ is flat and has a relative dimension. Show that

$$
i^{*} \circ f^{*}=(f \circ i)^{*}: \mathrm{CH}(S) \rightarrow \mathrm{CH}(D)
$$

EXERCISES 4 (INTERSECTION THEORY)

Exercise 1. Let A be a commutative ring. A characteristic class φ is the data of a group endomorphism $\varphi(E)$ of $\mathrm{CH}(X) \otimes A$ for every vector bundle $E \rightarrow X$, such that for every flat morphism $f: Y \rightarrow X$ having a relative dimension,

$$
f^{*} \circ \varphi(E)=\varphi\left(f^{*} E\right) \circ f^{*}: \mathrm{CH}(X) \otimes A \rightarrow \mathrm{CH}(Y) \otimes A .
$$

(i) Assume that a vector bundle E has a filtration by sub-bundles $E_{n+1} \subset E_{n}$ such that $L_{n}=E_{n} / E_{n+1}$ is a line bundle. Express the i-th Chern class $c_{i}(E)$ in terms of the classes $c_{1}\left(L_{n}\right)$.
(ii) Let $F \in A\left[x_{1}, \cdots, x_{n}\right]$ be a symmetric polynomial. Show that there is a unique characteristic class φ such that whenever E is a vector bundle with a filtration with successive quotients line bundles L_{1}, \cdots, L_{m}, then

$$
\varphi(E)=F\left(c_{1}\left(L_{1}\right), \cdots, c_{1}\left(L_{m}\right)\right)
$$

(iii) Let $P \in A[[t]]$ a power series. Show that there is unique characteristic class π_{P} such that

- If $0 \rightarrow E \rightarrow F \rightarrow G \rightarrow 0$ is an exact sequence of vector bundles, then $\pi_{P}(E) \circ \pi_{P}(G)=\pi_{P}(F)$.
- If $L \rightarrow X$ is a line bundle, then $\pi_{P}(L)=P\left(c_{1}(L)\right)$.
(iv) Let $P \in A[[t]]$ a power series. Show that there is unique characteristic class γ_{P} such that
- If $0 \rightarrow E \rightarrow F \rightarrow G \rightarrow 0$ is an exact sequence of vector bundles, then $\gamma_{P}(E)+\gamma_{P}(G)=\gamma_{P}(F)$.
- If $L \rightarrow X$ is a line bundle, then $\gamma_{P}(L)=P\left(c_{1}(L)\right)$.
(v) When $A=\mathbb{Q}$, and

$$
P(t)=\sum_{n \geq 0} t^{n} / n!,
$$

we define the Chern character ch $=\gamma_{P}$. Show that

$$
\operatorname{ch}(E \otimes F)=\operatorname{ch}(E) \circ \operatorname{ch}(F)
$$

for any vector bundles E, F.
Exercise 2. Let X be a smooth (or more generally locally factorial) variety. Show that the morphism $\operatorname{Pic}(X) \rightarrow \mathrm{CH}^{1}(X)$ mapping L to $c_{1}(L)[X]$ is a group isomorphism.

Exercise 3. When E is a vector bundle of rank r, its determinant $\operatorname{det} E$ is the line bundle $\Lambda^{r} E$. We say that E is orientable if $\operatorname{det} E$ is the trivial line bundle.
(i) Consider an exact sequence of vector bundles

$$
0 \rightarrow E \rightarrow F \rightarrow L \rightarrow 0
$$

where L is a line bundle. Show that $(\operatorname{det} E) \otimes L \simeq \operatorname{det} F$.
(ii) Show that $c_{1}(\operatorname{det} E)=c_{1}(E)$ for any vector bundle E, and deduce that $c_{1}(E)=0$ when E is orientable.
(iii) Conversely, show that a vector bundle E over a smooth variety X is orientable as soon as $c_{1}(E)[X]=0$.

