The letter R denotes a (commutative unital) noetherian ring.

Exercise 1. Let M_1 and M_2 be two finitely generated *R*-modules. Show that

$$\operatorname{Supp}(M_1 \otimes_R M_2) = \operatorname{Supp}(M_1) \cap \operatorname{Supp}(M_2).$$

Exercise 2. Consider the \mathbb{Z} -module $N = \bigoplus_{k \in \mathbb{N}} \mathbb{Z}/p^k$. Compute $\operatorname{Supp}_{\mathbb{Z}}(N)$ and $\operatorname{Ann}_{\mathbb{Z}}(N)$.

Exercise 3. Let M be a finitely generated R-module and $\mathfrak{p} \in \operatorname{Spec}(R)$. Show that

 $\mathfrak{p} \in \operatorname{Supp}(M) \iff \operatorname{Hom}_R(M, R/\mathfrak{p}) \neq 0.$

Exercise 4. Let k be a field, and $S = k[X_1, X_2, \cdots]/(X_1^2, X_2^2, \cdots)$. Show that S is not noetherian. Compute $Ass_k(S)$ and $Ass_S(S)$ (the definition of an associated prime immediately extends to non-noetherian rings).

Exercise 5. Let $x \in R$. For a prime \mathfrak{p} of R, we denote by $x(\mathfrak{p}) \in \kappa(\mathfrak{p}) = R_{\mathfrak{p}}/(\mathfrak{p}R_{\mathfrak{p}})$ the image of x. To what (simple) condition on x is each of the following conditions equivalent?

- $x(\mathfrak{p}) = 0$ for all $\mathfrak{p} \in \operatorname{Ass}(R)$.
- $x(\mathfrak{p}) \neq 0$ for all $\mathfrak{p} \in \operatorname{Ass}(R)$.

Exercise 6. (Primary decomposition) Let M be a finitely generated R-module. We are trying to find submodules $Q(\mathfrak{p}) \subset M$ for $\mathfrak{p} \in Ass(M)$ satisfying

$$\operatorname{Ass}(M/Q(\mathfrak{p})) = \{\mathfrak{p}\}$$
 and $\bigcap_{\mathfrak{p}\in\operatorname{Ass}(M)} Q(\mathfrak{p}) = 0.$

- (i) Assuming that the $Q(\mathfrak{p})$'s exist, compute Ass $(Q(\mathfrak{p}))$.
- (ii) Show that the $Q(\mathfrak{p})$'s exist.
- (iii) If $S \subset R$ is a multiplicatively closed subset, show that we have in $S^{-1}M$

$$\bigcap_{\substack{\mathfrak{p}\in \mathrm{Ass}(M)\\\mathfrak{p}\cap S=\varnothing}} S^{-1}Q(\mathfrak{p}) = 0$$

(iv) If $\mathfrak{p} \in Ass(M)$ is minimal, show that $Q(\mathfrak{p}) = \ker(M \to M_{\mathfrak{p}})$.

Exercise 7. Let M, N be R-modules, with M finitely generated. Show that

$$\operatorname{Ass}(\operatorname{Hom}_R(M, N)) = \operatorname{Supp}(M) \cap \operatorname{Ass}(N).$$

(You may observe that $\operatorname{Hom}_R(M, N)$ is a submodule of $N^n = N \oplus \cdots \oplus N$ for some n.)

Exercise 8. Let $\varphi \colon R \to S$ be a ring morphism, and N an S-module. Show that

$$\operatorname{Ass}_R(N) = \{ \varphi^{-1} \mathfrak{q} \mid \mathfrak{q} \in \operatorname{Ass}_S(N) \}.$$

Exercise 9. (*) Let $R \to S$ be a flat ring morphism, and M an R-module. Show that

$$\operatorname{Ass}_{S}(M \otimes_{R} S) = \bigcup_{\mathfrak{p} \in \operatorname{Ass}_{R}(M)} \operatorname{Ass}_{S}(S/\mathfrak{p}S).$$

The letter R denotes a (commutative unital) noetherian ring.

Exercise 1. Let M be a nonzero finitely generated R-module. Prove directly (using Zorn's Lemma) that Supp(M) possesses a minimal element.

Exercise 2. Let *M* be a finitely generated *R*-module, and let $x \in R$. Show that the following are equivalent:

- (i) Multiplication by x is a nilpotent endomorphism of M.
- (ii) The element x belongs to every prime of Ass(M).

Exercise 3. Let M be a finitely generated R-module, and $M_i \subset M_{i+1}$ a chain of submodules such that $M_i/M_{i+1} \simeq R/\mathfrak{p}_i$ with \mathfrak{p}_i a prime of R. Let \mathfrak{p} be a minimal element of $\mathrm{Supp}(M)$. Show that the number of indices i such that $\mathfrak{p}_i = \mathfrak{p}$ does not depend on the choice of the chain, and express this number purely in terms of M.

Exercise 4. Let M be an R-module.

- (i) Show that $\mathfrak{p} \in \text{Supp}(M)$ if and only if there is a submodule $N \subset M$ such that $\mathfrak{p} \in \text{Ass}(M/N)$. (Hint: take N of the form $\mathfrak{p}m$ for a well-chosen $m \in M$).
- (ii) Assume that M is finitely generated, and let $\mathfrak{p} \in \text{Supp}(M)$. Show that there is a chain of submodules $0 = M_0 \subsetneq \cdots \subsetneq M_n = M$ such that $M_i/M_{i-1} \simeq R/\mathfrak{p}_i$ with $\mathfrak{p}_i \in \text{Spec}(R)$ and moreover $\mathfrak{p} \in \{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}$.

The letter R denotes a (commutative unital) noetherian ring.

Exercise 1. Let $\varphi \colon A \to B$ be a morphism of local noetherian rings making B a finite type A-module. Show that φ is a local morphism.

Exercise 2. Let $\rho: R \to S$ be a flat morphism and M a finitely generated R-module. Show that the map $\operatorname{Spec}(S) \to \operatorname{Spec}(R)$ maps $\operatorname{Ass}_S(S \otimes_R M)$ into $\operatorname{Ass}_R(M)$.

Exercise 3. Assume that dim $R \ge 2$. Show that Spec R is infinite.

Exercise 4. (i) Let \mathfrak{p} be a prime of R. Show that the ideal $\mathfrak{p}R[t]$ of R[t] is prime.

- (ii) Show that $\dim R[t] \ge 1 + \dim R$
- (iii) Show that dim $R[t_1, \dots, t_n] = n + \dim R$.

Exercise 5. Let $\mathfrak{p} \in \operatorname{Spec}(R)$ and consider the *n*-th symbolic power

 $\mathfrak{p}^{[n]} = \{ u \in R \mid su \in \mathfrak{p}^n \text{ for some } s \in R - \mathfrak{p} \}.$

- (i) Show that $\operatorname{Ass}(R/\mathfrak{p}^n)$ may differ from $\{\mathfrak{p}\}$ by considering the case R = k[x, y]/(xy) with k a field, and $\mathfrak{p} = xR$.
- (ii) Show that $\operatorname{Ass}(R/\mathfrak{p}^{[n]}) = {\mathfrak{p}}$, and that $\mathfrak{p}^{[n]}$ is minimal among the ideals I containing \mathfrak{p}^n and satisfying $\operatorname{Ass}(R/I) = {\mathfrak{p}}$.

Exercise 6. (i) Show that every prime of R has finite height.

(ii) Let M be a possibly non-finitely generated R-module. Assume that $M \neq 0$. Show that Supp(M) admits at least one minimal element.

Exercise 1. (i) Let M be an R-module such that id_M is in the image of the natural morphism

$$\operatorname{Hom}_R(M, R) \otimes_R M \to \operatorname{Hom}_R(M, M).$$

Show that M is projective.

(ii) Let M, N, Q three *R*-modules. Assume that Q is flat, M is finitely generated, and R is noetherian. Show that the natural morphism

 $\operatorname{Hom}_R(M, N) \otimes_R Q \to \operatorname{Hom}_R(M, N \otimes_R Q)$

is bijective. (Hint: Introduce a finite presentation of M, that is, an exact sequence $F_1 \rightarrow F_0 \rightarrow M \rightarrow 0$, with F_0, F_1 free and finitely generated *R*-modules).

- (iii) Assume that R is noetherian and let M is a finitely generated flat R-module. Show M is projective.
- (iv) Give an example of a flat, non-projective, \mathbb{Z} -module.

Exercise 2. Let x be a nonzerodivisor in R. Express $\text{Tor}_1(R/x, M)$ in an elementary way in terms of x and M.

Exercise 3. Let I, J be two ideals in a ring R. Express $\operatorname{Tor}_{1}^{R}(R/I, R/J)$ in an elementary way in terms of R, I, J.

- **Exercise 4.** (i) Show that M is flat, resp. projective, if and only if $\text{Tor}_1(N, M) = 0$, resp. $\text{Ext}^1(M, N) = 0$, for every module N.
- (ii) Let $0 \to M' \to M \to M'' \to 0$ be an exact sequence. Assume that M' and M'' are projective, resp. flat, and show that M is projective, resp. flat.

Exercise 5. Let M, N two R-modules. Assume that R is noetherian and that M is finitely generated. Show that $\operatorname{Tor}_n(M, N)$ and $\operatorname{Ext}^n(M, N)$ are finitely generated.

Exercise 6. Let $R \to S$ be a flat ring morphism, and M, N two *R*-modules.

(i) Show that

$$\operatorname{Tor}_{n}^{R}(M, N) \otimes_{R} S \simeq \operatorname{Tor}_{n}^{S}(M \otimes_{R} S, N \otimes_{R} S).$$

(ii) Assume that R is notherian, and M finitely generated. Show that

$$\operatorname{Ext}_{R}^{n}(M, N) \otimes_{R} S \simeq \operatorname{Ext}_{S}^{n}(M \otimes_{R} S, N \otimes_{R} S).$$

Exercise 7 (Yoneda description of Ext^1). We fix two modules A and B. Given an exact sequence α of type

$$0 \to B \to X \to A \to 0$$

we define $[\alpha] \in \operatorname{Ext}^1(A, B)$ to be the image of id_A under the morphism $\operatorname{Hom}_R(A, A) \to \operatorname{Ext}^1(A, B)$ (which is part of the long exact sequence of Ext-groups associated with the short exact sequence α).

(i) We say that α splits if there is a morphism $A \to X$ such that the composite $A \to X \to A$ is the identity. Show that α splits if and only if $[\alpha] = 0$.

We say that two exact sequences $0 \to B \to X \to A \to 0$ and $0 \to B \to X' \to A \to 0$ are Yoneda equivalent if there is an isomorphism $X \to X'$ fitting in the commutative diagram

- (ii) Show that a sequence splits if and if it is Yoneda equivalent to the sequence $0 \to B \to A \oplus B \to A \to 0$.
- (iii) We let E(A, B) be the set of exact sequences $0 \to B \to X \to A \to 0$ modulo Yoneda equivalence. Show that $\alpha \mapsto [\alpha]$ induces a map $E(A, B) \to \text{Ext}^1(A, B)$.

We construct a map $\operatorname{Ext}^1(A, B) \to E(A, B)$ as follows. Take an exact sequence $0 \to K \to F \to A \to 0$ with F free. An element $u \in \operatorname{Ext}^1(A, B)$ is represented by a morphism $\varphi_u \colon K \to B$. Let X_u be the cokernel of the morphism $K \to F \oplus B$ given by $k \mapsto (j(k), -\varphi_u(k))$ where j is the injective morphism $K \to F$.

- (iv) Show that we have an exact sequence $0 \to B \to X_u \to A \to 0$, and therefore an element of E(A, B).
- (v) Show that this gives a map $\text{Ext}^1(A, B) \to E(A, B)$.
- (vi) Show that $\text{Ext}^1(A, B)$ and E(A, B) are in bijection.
- (vii) Let $\alpha, \beta \in E(A, B)$. Describe the element $\gamma \in E(A, B)$ such that $[\gamma] = [\alpha] + [\beta]$. Describe the functorialities of E(A, B) in A and B.

Exercise 1. Let C, D be two chain complexes of R-modules. Their tensor product $C \otimes_R D$ is defined as follows. We let

$$(C \otimes_R D)_n = \bigoplus_{i \in \mathbb{Z}} C_i \otimes_R D_{n-i}$$

and for $x \in C_i$ and $y \in D_{n-i}$, the differential is given by

$$d_n^{C\otimes_R D}(x\otimes y) = d_i^C(x) \otimes y + (-1)^i x \otimes d_{n-i}^D(y).$$

- (i) Show that $(C \otimes_R D, d^{C \otimes_R D})$ defines a chain complex.
- (ii) Show that the complexes $C \otimes_R D$ and $D \otimes_R C$ are isomorphic.

Exercise 2. Let $f: B \to C$ be a morphism of chain complexes. We let

$$cone(f)_n = B_{n-1} \oplus C_n$$

and define a morphism $d_n: cone(f)_n \to cone(f)_{n-1}$ by

$$d_n(b,c) = (-d_{n-1}^B(b), d_n^C(c) - f_{n-1}(b)).$$

- (i) Show that (cone(f), d) defines a chain complex.
- (ii) Show that we have an exact sequence of complexes

$$0 \to C \to cone(f) \to B[-1] \to 0,$$

where B[-1] is the complex defined by $B[-1]_n = B_{n-1}$ and $d_n^{B[-1]} = -d_{n-1}^B$.

(iii) Deduce that we have a long exact sequence

$$\cdots \to H_{n+1}(cone(f)) \to H_n(B) \xrightarrow{o} H_n(C) \to H_n(cone(f)) \to \ldots$$

- (iv) Show that the morphism $\delta: H_n(B) \to H_n(C)$ may be chosen to coincide with the morphism induced by f.
- (v) Deduce that f is a quasi-isomorphism if and only if cone(f) is exact.

Let R be a ring, and $x_1, \dots, x_n \in R$. We construct the associated Koszul complex as follows. Let e_1, \dots, e_n be the standard basis of the R-module R^n . Let $p \in \mathbb{Z}$. For $p \in \{1, \dots, n\}$, we let K_p be the free R-module with the basis consisting of the elements $e_{i_1} \wedge \dots \wedge e_{i_p}$ where $1 \leq i_1 < \dots < i_p \leq n$. We let $K_0 = R$, and $K_p = 0$ when $p \notin \{0, \dots, n\}$. We define a R-linear morphism $d: K_p \to K_{p-1}$ using the formula

$$d_p(e_{i_1} \wedge \dots \wedge e_{i_p}) = \sum_{r=1}^p (-1)^{r-1} x_{i_r} \cdot e_{i_1} \wedge \dots \wedge e_{i_{r-1}} \wedge e_{i_{r+1}} \wedge \dots \wedge e_{i_p}$$

(the vector e_{i_r} is omitted.) When p = 1, the above formula must be understood as

$$d_1(e_i) = x_i \in R = K_0.$$

Exercise 1. Show that $d_{p-1} \circ d_p = 0$.

This gives a chain complex $K(x_1, \dots, x_n) = (K, d)$. Let M be an R-module. We denote by $K(M; x_1, \dots, x_n)$ the complex $K(x_1, \dots, x_n) \otimes_R M$. Its p-th homology is denoted $H_p(M; x_1, \dots, x_n)$.

- **Exercise 2.** (i) Express $H_0(M; x_1, \dots, x_n)$ and $H_n(M; x_1, \dots, x_n)$ directly in terms of M and x_1, \dots, x_n .
 - (ii) Describe the complex $K(M; x_1)$.
- **Exercise 3.** (i) Show that the complexes $K(M; x_1, \dots, x_n)$ and $K(x_1) \otimes_R \dots \otimes_R K(x_n) \otimes_R M$ are isomorphic.
- (ii) Let L be a chain complex of R-modules and $x \in R$. Show that we have an exact sequence of chain complexes of R-modules

$$0 \to L \to K(x) \otimes_R L \to L[-1] \to 0,$$

(where $L[-1]_n = L_{n-1}$ and $d_n^{L[-1]} = -d_{n-1}^L$) and deduce and exact sequence of *R*-modules

$$0 \to H_0(H_p(L); x) \to H_p(K(x) \otimes_R L)) \to H_1(H_{p-1}(L); x) \to 0.$$

Exercise 4. Let A be a local (noetherian) ring, M a finitely generated A-module, and $x_1, \dots, x_n \in \mathfrak{m}$.

- (i) Assume that (x_1, \dots, x_n) is an *M*-regular sequence. Show that $H_i(M; x_1, \dots, x_n) = 0$ for i > 0.
- (ii) Assume that $H_1(M; x_1, \dots, x_n) = 0$. Show that (x_1, \dots, x_n) is an M-regular sequence.

Exercise 5. Let A be a local (noetherian) ring, and M a finitely generated A-module. Assume that (x_1, \dots, x_n) is an M-regular sequence.

- (i) Let σ be a permutation of $\{1, \dots, n\}$. Show that $(x_{\sigma(1)}, \dots, x_{\sigma(n)})$ is an *M*-regular sequence.
- (ii) Let t_1, \ldots, t_n be integers ≥ 1 . Show that $(x_1^{t_1}, \ldots, x_n^{t_n})$ is a regular *M*-sequence.
- **Exercise 6.** (i) Let L be a complex of R-modules and $x \in R$. Show that $x \cdot H_p(K(x) \otimes_R L) = 0$.

(ii) Let $x_1, \dots, x_n \in R$, and I be the ideal generated by these elements. Let M be an R-module. Show that $I \cdot H_p(M; x_1, \dots, x_n) = 0$.

Exercise 7. (Depth sensitivity of the Koszul complex) Let A be a local ring, and $\{x_1, \dots, x_n\}$ a generating set for its maximal ideal. Let M be a nonzero finitely generated A-module. Show that

$$\operatorname{depth} M = n - \max\{i | H_i(M; x_1, \cdots, x_n) \neq 0\}.$$

(use Exercise 6.)

Exercise 8. (A more functorial approach) Let U be a finitely generated free R-module. For an R-module, we denote by $V^{\vee} = \operatorname{Hom}_R(V, R)$ its dual. We consider the R-module

$$T(U) = \bigoplus_{p \ge 0} U^{\otimes p} = R \oplus U \oplus (U \otimes_R U) \oplus \cdots$$

The *R*-module $\Lambda(U)$ is the quotient of T(U) by the submodule generated by elements $x_1 \otimes \cdots \otimes x_p$ which are such that $x_i = x_j$ for some $i \neq j$. It is naturally graded; we denote by $\Lambda^p U$ the image of $U^{\otimes p}$ and by $u_1 \wedge \cdots \wedge u_p$ the image of $u_1 \otimes \cdots \otimes u_p$. An isomorphism $U \simeq \mathbb{R}^n$ induces an isomorphism $\Lambda^p U \simeq K_p$.

- (i) Show that the natural morphism $\rho_p \colon \Lambda^p(U^{\vee}) \to (\Lambda^p U)^{\vee}$ is an isomorphism.
- (ii) Let $u \in U$, and $\varphi_u \colon \Lambda^p U \to \Lambda^{p+1} U$ be defined by $\varphi_u(v) = u \wedge v$. Show that if e_1, \dots, e_n is a basis of the *R*-module U^{\vee} , and (x_1, \dots, x_n) are the coordinates of *u* in the dual basis of *U*, then the differential *d* of the Koszul complex may be identified with

$$\Lambda^{p+1}(U^{\vee}) \xrightarrow{\rho_{p+1}} (\Lambda^{p+1}U)^{\vee} \xrightarrow{(\varphi_u)^{\vee}} (\Lambda^p U)^{\vee} \xrightarrow{\rho_p^{-1}} \Lambda^p(U^{\vee}).$$

(iii) Reprove without computation that $d \circ d = 0$.