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CHAPTER 1

Algebraic cycles

Basic references are [Ful98], [EKM08, Chapters IX and X] and [Sta18, Tag 02P3].

1. Length of a module

All rings will be commutative, with unit, and noetherian. When A is a local ring, we
denote by mA its maximal ideal.

Let A be a (noetherian commutative) ring, and M a finitely generated A-module.
The length of a chain of submodules 0 = M0 ( · · · ( Mn = M is the integer n. The
length of M , denoted by

lA(M) ∈ N ∪ {∞}
is supremum of the length of the chains of submodules of M . If I is an ideal of M such
that IM = 0, then lA(M) = lA/I(M). When A is a field, then lA(M) is the dimension of
the A-vector space M . The length of the ring A is lA(A) and will be denoted by l(A).

Definition 1.1.1. A function ψ, which associates to every finitely generated A-
module M an element ψ(M) of N∪{∞} will be called additive, if for every exact sequence
of A-modules

0→M ′ →M →M ′′ → 0

we have in N ∪ {∞},
ψ(M) = ψ(M ′) + ψ(M ′′).

Proposition 1.1.2. The length function M 7→ lA(M) is additive.

The support of M , denoted SuppM , is the set of primes p of A such that Mp 6= 0.
The dimension of M , denoted dimM , is the Krull dimension of the topological space
SuppM . It coincides with the dimension of the ring A/Ann(M).

Proposition 1.1.3. Let A be a local ring, and M a finitely generated A-module. The
following conditions are equivalent:

(i) lA(M) <∞.
(ii) There is n ∈ N such that (mA)nM = 0.

(iii) We have dimM ≤ 0.

Lemma 1.1.4. Let M be a finitely generated A-module. There is a sequence of A-
submodules 0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M such that

Mi+1/Mi ' A/pi
with pi ∈ SuppM .
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2. Group of cycles

We fix a base field k. A variety will mean a separated scheme of finite type over
Spec k. Unless otherwise specified, all schemes will be assumed to be varieties, and a
morphism will be a k-morphism. The function field of an integral variety X will be
denoted by k(X). If Z is an integral closed subscheme of a variety X, we denote by OX,Z
the local ring OX,z at the generic point z of Z.

Definition 1.2.1. Let X be a variety. We define Z(X) as the free abelian group
on the classes V of integral closed subschemes V of X. A cycle on X is an element of
Z(X), that is, a finite Z-linear combination of elements [V ], for V as above. There is a
grading Z(X) =

⊕
nZn(X), where Zn(X) is the subgroup generated by the classes [V ]

with dimV = n.

Definition 1.2.2. When T is a (possibly non-integral) closed subscheme of X, we
define its class

[T ] =
∑
i

mi[Ti] ∈ Z(X),

where Ti are the irreducible components of T , and mi = l(OT,Ti
) is the multiplicity of T

at Ti. (The local ring OT,Ti
has dimension zero, hence finite length by Proposition 1.1.3;

there are only finitely many irreducible components because T is a noetherian scheme.)
Note that [∅] = 0.

Definition 1.2.3. Let Y → X be a dominant morphism between integral varieties.
We define an integer

deg(Y/X) =

{
[k(Y ) : k(X)] if dimY = dimX,

0 otherwise.

Definition 1.2.4. When f : Y → X is a morphism (between varieties), and W an
integral closed subscheme of Y , we let V be the closure of f(W ) in X (or equivalently
the scheme-theoretic image of W → X), and define

f∗[W ] = deg(W/V ) · [V ]

This extends by linearity to give a group homomorphism

f∗ : Zn(Y )→ Zn(X).

Example 1.2.5. Let X be a variety, with structural morphism p : X → Spec k. Then
we have a group homomorphism

deg = p∗ : Z(X)→ Z(Spec k) = Z.

We have degZn(X) = 0 if n > 0. The group Z0(X) is generated by the classes of closed
points of X, and for such a point x with residue field k(x), we have

deg[{x}] = [k(x) : k].

Lemma 1.2.6. Consider morphisms Z
g−→ Y

f−→ X. We have

(f ◦ g)∗ = f∗ ◦ g∗ : Z(Z)→ Z(X).
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Proof. Let W be an integral closed subscheme of Z. Let V be the closure of g(W )
in Y , and U the closure of f(V ) in X. Then U is the closure of (f ◦ g)(W ) in X. We
have dimW = dimU if and only if dimV = dimU and dimV = dimW , in which case

(f ◦ g)∗[W ] = [k(W ) : k(U)] · [U ]

= [k(W ) : k(V )] · [k(V ) : k(U)] · [U ]

= [k(W ) : k(V )] · f∗[V ]

= f∗ ◦ g∗[W ].

Otherwise (f ◦ g)∗[W ] = 0, and either g∗[W ] = 0 or f∗[V ] = 0. Since f∗[V ] is a multiple
of [W ], we have f∗ ◦ g∗[W ] = 0 in either case. �

3. Effective Cartier divisors I

Definition 1.3.1. A closed embedding D → X is called an effective Cartier divisor
if its ideal ID is a locally free OX -module of rank one (i.e. an invertible OX -module). It is
equivalent to require that every point of X have an open affine neighborhood U = SpecA
such that D ∩ U = SpecA/aA for some nonzerodivisor a ∈ A (recall that a ∈ A is called
a nonzerodivisor if the only x ∈ A such that ax = 0 is x = 0).

Proposition 1.3.2. Let f : Y → X be morphism, and D → X an effective Cartier
divisor. Then f−1D → Y is an effective Cartier divisor, under any of the following
assumptions.

(i) Y is integral, and f−1D 6= Y ,
(ii) or f is flat.

Proof. We may assume that X = SpecA, and D = SpecA/aA for some nonzerodi-
visor a ∈ A. We may further assume that Y = SpecB, that f is given by a ring morphism
u : A→ B, and prove that u(a) is a nonzerodivisor in B.

If u : A→ B is flat, then multiplication by a is an injective endomorphism of A, hence
multiplication by u(a) = a⊗1 is an injective endomorphism of B = A⊗AB (by flatness),
so that u(a) is a nonzerodivisor in B.

If f−1D 6= Y , then the element u(a) ∈ B is nonzero, hence a nonzerodivisor if B is a
domain (i.e. Y is integral). �

We will use the following version of Krull’s principal ideal theorem:

Theorem 1.3.3. Let A be a noetherian ring and a ∈ A a nonzerodivisor. Then every
prime of A minimal over a has height one.

Lemma 1.3.4. Let D → X be an effective Cartier divisor, with X of pure dimension
n. Then D has pure dimension n− 1.

Proof. To prove that D has pure dimension n−1, we may assume that X = SpecA
and D = SpecA/aA for some nonzerodivisor a ∈ A. Then the irreducible components of
D correspond to the minimal primes of A over a. If p is such a prime, then height p = 1
by Krull’s Theorem 1.3.3. Let q be a minimal prime of A contained in p, and T the
corresponding irreducible component of X. We recall that in an integral domain which
is finitely generated over a field, all the maximal chains of primes have the same length
(see e.g. [Har77, Theorem 1.8A]). In particular

dimT = tr.deg.(k(T )/k) = n = 1 + dimA/p,



1. Algebraic cycles 6

so that the irreducible component of D corresponding to p has dimension n− 1. �

Proposition 1.3.5. Let X be an equidimensional variety, and D → X an effective
Cartier divisor. Let Xi be the irreducible components of X, and mi = l(OX,Xi) the
corresponding multiplicities. Then

[D] =
∑
i

mi[D ∩Xi] ∈ Z(X).

Proof. It will suffice to compare the coefficients at an integral closed subscheme Z
of codimension one in X contained in D. Let A = OX,Z and U = SpecB an open affine
subscheme of X containing the generic point of Z such that D ∩ U → U is defined by a
nonzerodivisor b ∈ B. Let a ∈ A be the image of b. Then OD,Z = A/aA, and the formula
that we need to prove becomes

l(A/aA) =
∑
i

l(Api
)l(A/(pi + aA)),

where pi are the minimal primes of A, corresponding to the components Xi containing Z
(if Z 6⊂ Xj then the coefficient of [D ∩Xj ] at Z is zero). We prove the formula above in
Corollary 1.4.6 in the next section. �

4. Herbrand Quotients I

Let A be a noetherian ring and a ∈ A. Let M be a finitely generated A-module. We
will denote the a-torsion submodule of M by

M{a} = ker(M
a−→M) = {m ∈M |am = 0}.

Lemma 1.4.1. We have Supp(M{a}) ⊂ Supp(M/aM).

Proof. Let p ∈ Supp(M{a}). Then 0 6= (M{a})p = Mp{a} ⊂ Mp. If p 6∈
Supp(M/aM), then 0 = (M/aM)p = Mp/aMp, hence by Nakayama’s lemma a 6∈ p.
Thus a ∈ (Ap)×, hence multiplication by a induces an injective endomorphism of Mp, so
that Mp{a} = 0, a contradiction. �

Definition 1.4.2. Assume that lA(M/aM) <∞. Then lA(M{a}) <∞ by Lemma 1.4.1,
and we define the integer

eA(M,a) = lA(M/aM)− lA(M{a}).

Lemma 1.4.3. If M has finite length, then eA(M,a) = 0.

Proof. This follows by additivity of the length function from the exact sequences
of A-modules of finite length

0→M{a} →M → aM → 0

0→ aM →M →M/aM → 0. �

The next statement asserts that the function eA(−, a) is additive:

Lemma 1.4.4. Consider an exact sequence of finitely generated A-modules

0→M ′ →M →M ′′ → 0.

If M/aM has finite length, then so have M ′/aM ′ and M ′′/aM ′′, and

eA(M,a) = eA(M ′, a) + eA(M ′′, a).
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Proof. The snake lemma gives an exact sequence

0→M ′{a} →M{a} →M ′′{a} →M ′/aM ′ →M/aM →M ′′/aM ′′ → 0.

If M/aM has finite length, then so has its quotient M ′′/aM ′′. By Lemma 1.4.1, the
A-module M ′′{a} also has finite length, hence by the sequence above so has M ′/aM ′.
The equality follows from the additivity of the length function. �

Proposition 1.4.5. Let A be a noetherian ring and M a finitely generated A-module.
Let a ∈ A be such that the A-module M/aM has finite length. Then

eA(M,a) =
∑
p

lAp
(Mp) · l(A/(p + aA)),

where p runs over the non-maximal primes of A.

Proof. Both sides are additive in M by Proposition 1.1.2 and Lemma 1.4.4. Thus
by we may assume that M = A/q for some prime q of A. If q is maximal, then both sides
vanish, in view of Lemma 1.4.3. We may thus assume that the ideal q is not maximal.
Since l(A/(q + aA)) < ∞, every prime containing q + aA is maximal, and in particular
a 6∈ q. By Krull’s Theorem 1.3.3, we have dimA/q = 1, hence the only non-maximal prime
p such that Mp 6= 0 is p = q. Thus the right hand side is lAq

(κ(q)) · l(A/(q + aA)) =
l(A/(q + aA)) (where κ(q) = (A/q)q is the residue field at q), and coincides with the left
hand side, since M{a} = 0. �

Corollary 1.4.6. Let A be a noetherian ring of dimension one and a ∈ A a nonze-
rodivisor. Then

l(A/aA) =
∑
p

l(Ap)l(A/(p + aA)),

where p runs over the minimal primes of A.

Proof. We have dimA/aA ≤ 0 by Krull’s Theorem 1.3.3 (or more simply because
the nonzerodivisor a cannot belong to any minimal prime), hence l(A/aA) < ∞. Since
A{a} = 0, it follows that eA(A, a) = l(A/aA). Thus the statement follows from Proposi-
tion 1.4.5 applied with M = A. �

5. Flat pull-back

We will make repeated use of the following form of the going-down theorem:

Proposition 1.5.1. Let f : Y → X be a flat morphism. Then any irreducible com-
ponent of Y dominates an irreducible component of X

Definition 1.5.2. A morphism f : Y → X is said to have relative dimension d, if for
all morphisms V → X with V integral, the variety f−1V = V ×X Y has pure dimension
d+ dimV .

If f has relative dimension d, then the same is true for any base-change of f .

Example 1.5.3. Examples of flat morphisms of relative dimension d include:

• Open immersions (d = 0),
• Vector bundles of constant rank d,
• Projective bundles of constant rank d+ 1.
• The structural morphism to Spec k of a variety of pure dimension d.
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• More generally, any flat morphism Y → X where X is irreducible and Y has
pure dimension d+ dimX.

Definition 1.5.4. Let f : Y → X be a flat morphism of relative dimension d. When
V is an integral closed subscheme of X, we define (using Definition 1.2.2)

f∗[V ] = [f−1V ] = [V ×X Y ] ∈ Z(Y ).

This extends by linearity to give a group homomorphism

f∗ : Zn(X)→ Zn+d(Y ).

Remark 1.5.5. Let u : U → X be an open immersion. The homomorphism u∗ : Z(X)→
Z(U) sends [V ] to [V ∩U ]. Note that if Ui is a finite open cover of X, the homomorphism
Z(X)→

⊕
iZ(Ui) is injective.

Lemma 1.5.6. Let f : Y → X be a flat morphism with a relative dimension. Then
f∗[X] = [Y ] in Z(Y ).

Proof. Let W be an irreducible component of Y , and V the closure of its image in
X. Proposition 1.5.1 implies that V is an irreducible component of X. The coefficient
of [Y ] at W is l(OY,W ), and the coefficient of f∗[X] at W is l(OX,V )l(Of−1V,W ). Let
A = OX,V and B = OY,W . Since B/mAB = Of−1V,W , we need to prove that

l(B) = l(A)l(B/mAB).

This follows from Lemma 1.5.7 below (with M = A). �

Lemma 1.5.7. Let A be a local ring and B a flat A-algebra. Assume that dimA =
dimB = 0 and let M be a finitely generated A-module. Then

lB(M ⊗A B) = lA(M)l(B/mAB).

Proof. Both sides are additive in M , and we may assume by Lemma 1.1.4 that
M = A/mA. Then lA(M) = 1, and the result follows. �

Proposition 1.5.8. If g : Z → Y and f : Y → X are two flat morphisms having a
relative dimension, then so is the composite f ◦ g, and we have

(f ◦ g)∗ = g∗ ◦ f∗ : Z(X)→ Z(Z).

Proof. The first statement follows at once from the definition.
Let U be an integral closed subscheme of X, and V = f−1U and W = (f ◦ g)−1U .

Replacing Z → Y → X with W → V → U , it will suffice to prove that the two homo-
morphisms have the same effect on [X]. By Lemma 1.5.6, we have

(f ◦ g)∗[X] = [(f ◦ g)−1X] = [g−1f−1X] = g∗[f−1X] = g∗ ◦ f∗[X]. �

Proposition 1.5.9. Consider a cartesian square

Y ′
f ′ //

y

��

X ′

x

��
Y

f // X

where the morphism x (and therefore also y) is flat of relative dimension d. Then

f ′∗ ◦ y∗ = x∗ ◦ f∗.
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Proof. The case when f is a closed embedding follows from the definition of the
flat pull-back. We prove that the two homomorphisms have the same effect on the class
on an integral closed subscheme W of Y . Let V be the closure f(W ) in X. Taking the
base change along V → X, and using the case of a closed embedding, we are reduced to
assuming that Y and X are integral, and that f is dominant, and (since y∗[Y ] = [Y ′] by
Lemma 1.5.6) proving that

(1.5.a) f ′∗[Y
′] = x∗ ◦ f∗[Y ].

Since f has relative dimension d, for every irreducible component R of Y ′, we have

dimR− dimX ′ = dimY − dimX.

In particular, if dimY > dimX, then f∗[Y ] = 0 and f ′∗[Y
′] = 0, so that (1.5.a) holds.

Thus we assume that dimX = dimY (recall that f is dominant). We prove that
the two sides of (1.5.a) have the same coefficient on the class of a given irreducible T
component of X ′ (which must dominate X by Proposition 1.5.1). We let K = k(X),
L = k(Y ), C = OX′,T , and D = C ⊗K L. Applying Lemma 1.5.10 below with M = C,
we see that the coefficient of x∗ ◦ f∗[Y ] at [T ] is

[L : K]l(C) = lC(D).

The ring D is artinian (being finite over C), and the set SpecD is in bijection with
the irreducible components of Y ′ dominating T . Moreover if q ∈ SpecD corresponds to
an irreducible component Q, then the local rings Dq and OY ′,Q are isomorphic. It follows
that the coefficient of f ′∗[Y

′] at [T ] is∑
q

l(Dq)[D/q : C/mC ] =
∑
q

l(Dq)lC(D/q),

where q runs over SpecD. The statement follows from Lemma 1.5.11 below, applied with
A = C and B = M = D. �

Lemma 1.5.10. Let L/K be a finite field extension and C a K-algebra. Let M be a
C-module of finite length. Then

lC(M ⊗K L) = [L : K]lC(M).

Proof. By Proposition 1.1.3 the set SuppCM consists of maximal ideals of C. Both
sides of the equation are additive in M , hence by Lemma 1.1.4 we may assume that
M = C/p, for p a maximal ideal of C. Then M is a field, so that lC(M) = 1, and

lC(M ⊗K L) = lM (M ⊗K L) = dimM (M ⊗K L) = dimK L = [L : K],

where dimM and dimK stand for the dimensions as vector spaces. The statement follows.
�

Lemma 1.5.11. Let B be an A-algebra, and M a B-module. Assume that M has
finite length as an A-module and that dimB = 0. Then

lA(M) =
∑

q∈SpecB
lBq

(Mq)lA(B/q).

Proof. Both sides of the equation are additive in the B-module M . By Lemma 1.1.4
we may assume that M = B/q, for q a maximal ideal of B, in which case both sides of
the equation are equal to 1. �
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CHAPTER 2

Rational equivalence

1. Order function

Let A be a local domain of dimension one and K its fraction field. When a ∈ A−{0},
the ring A/aA has dimension ≤ 0, hence finite length, and we define an integer

ordA(a) = l(A/aA) ∈ N.

If a, b ∈ A− {0}, we have an exact sequence of A-modules

0→ aA/abA→ A/abA→ A/aA→ 0.

Multiplication by the nonzero element a of the domain A induces an isomorphism

A/bA→ aA/abA.

Using the additivity of the length function, we deduce from the exact sequence above that

ordA(ab) = ordA(a) + ordA(b).

This allows us to extend the function ordA to a group homomorphism from the group
of invertible elements in K

ordA : K× → Z.
Concretely, we may write any ϕ ∈ K× as ϕ = f/g with f, g ∈ A− {0} and define

ordA(ϕ) = l(A/fA)− l(A/gA) ∈ Z.

Lemma 2.1.1. Let A be a discrete valuation ring with fraction field K. Then ordA : K× →
Z is the valuation of A.

Proof. Let π be a uniformiser of A. Any ϕ ∈ K× may be written as ϕ = πnu with
u ∈ A×, and n ∈ Z the valuation of ϕ. Observe that ordA(u) = 0 because u ∈ A×, while
ordA(π) = 1 since A/πA is the residue field of A, an A-module of length one. Thus

ordA(ϕ) = n ordA(π) + ordA(u) = n. �

Let X be an integral variety, and ϕ ∈ k(X)×. For any point x of codimension one
in X, the local ring OX,x has dimension one and its fraction field is k(X). We will write
ordx(ϕ) = ordOX,x

(ϕ). Similarly, for an integral closed subscheme V of codimension one
in X, we write ordV (ϕ) = ordOX,V

(ϕ).

Lemma 2.1.2. Let A be a finitely generated k-algebra which is a domain, a ∈ A−{0},
and consider the closed subscheme D = SpecA/aA of X = SpecA. Then

[D] =
∑
V

ordV (a) · [V ] ∈ Z(X),

where V runs over the integral closed subschemes of codimension one in X.
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Proof. SinceD → X is an effective Cartier divisor, the varietyD has pure dimension
dimX − 1 by Lemma 1.3.4. Let V be an integral closed subscheme of codimension one
in X, and let p be the corresponding prime of height one in A, so that Ap = OX,V . We
have

l((A/aA)p) = l(Ap/aAp) = ordV (a).

If V ⊂ D, then the integer above is the coefficient of [D] at [V ]. If V 6⊂ D, then the
coefficient of [D] at [V ] vanishes. But in this case we have a 6∈ p, and thus (A/aA)p = 0,
so that ordV (a) = 0, as required. �

Proposition 2.1.3. Let X be an integral variety, and ϕ ∈ k(X)×. The set of integral
closed subschemes V of codimension one in X such that ordV (ϕ) 6= 0 is finite.

Proof. Taking a finite cover by open affine subschemes, we may assume that X =
SpecA. Further, we may assume that ϕ ∈ A. Then the result follows from Lemma 2.1.2.

�

Definition 2.1.4. Let X be an integral variety, and ϕ ∈ k(X)×. We set

divϕ =
∑
V

ordV (ϕ) · [V ] ∈ Z(X),

where V runs over the integral closed subschemes of codimension one in X.

Thus Lemma 2.1.2 amounts to:

Lemma 2.1.5. Let A be a finitely generated k-algebra which is a domain, a ∈ A−{0},
and consider the closed subscheme D = SpecA/aA of X = SpecA. Then

[D] = div a ∈ Z(X).

Definition 2.1.6. Let X be a variety. We let R(X) be the subgroup of Z(X)
generated by the elements divϕ ∈ Z(V ) ⊂ Z(X), where V runs over the integral closed
subschemes of X, and ϕ ∈ k(V )×. Then we define the Chow group of X as

CH(X) = Z(X)/R(X) =
⊕
n

CHn(X),

where CHn(X) = Zn(X)/Rn(X) with Rn(X) = R(X) ∩ Zn(X).

2. Flat pull-back

When f : Y → X is a dominant morphism between integral varieties, and ϕ ∈ k(X)×,
we define f∗ϕ as the image of ϕ under the natural morphism k(X)× → k(Y )×.

Lemma 2.2.1. Let f : Y → X be a flat morphism having a relative dimension, and
let Yi be the irreducible components of Y , with multiplicities mi = OY,Yi

. Assume that
X is integral, and let ϕ ∈ k(X)×. Let fi : Yi → Y be the morphisms induced by f (which
are dominant by Proposition 1.5.1). Then

f∗ ◦ divϕ =
∑
i

mi div(f∗i ϕ) ∈ Z(Y ).

Proof. First observe that the statement certainly holds when f is an open immersion
(if x ∈ Y ⊂ X, then the local rings OY,x and OX,x are isomorphic).

In general, since f∗ and div are both compatible with restriction to open subschemes,
we may assume that X = SpecA, and also that Y = SpecB. Then ϕ = a/b with a, b ∈ A,
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and we may assume that ϕ ∈ A. Then ϕ defines an effective Cartier divisor D → X.
Since f is flat, its inverse image f−1D → Y remains an effective Cartier divisor by
Proposition 1.3.2. By the same proposition, since f−1D does not contain Yi (e.g. by
Lemma 1.3.4), the closed embedding Yi ∩ f−1D → Yi is an effective Cartier divisor; it
is given by the element f∗i ϕ ∈ H0(Yi,OYi

). Using Lemma 1.5.6, Proposition 1.3.5 and
Lemma 2.1.5, we have in Z(Y )

f∗ ◦ divϕ = f∗[D] = [f−1D] =
∑
i

mi[Yi ∩ f−1D] =
∑
i

mi div(f∗i ϕ). �

Proposition 2.2.2. Let f : Y → X be a flat morphism of relative dimension d. Then
f∗R(X) ⊂ R(Y ), giving a group homomorphism

f∗ : CH•(X)→ CH•+d(Y ).

Proof. Let V be an integral closed subscheme of X, and ϕ ∈ k(V )×. It will suffice to
prove that f∗ ◦divϕ = 0 in CH(f−1V ). Since the morphism f−1V → V is flat of relative
dimension d, we may assume that X is integral and ϕ ∈ k(X)×. Then the statement
follows from Lemma 2.2.1. �

3. Localisation sequence

Let i : Y → X be a closed embedding. Then i∗R(Y ) ⊂ R(X) by definition. This
gives a group homomorphism i∗ : CH(Y )→ CH(X).

Proposition 2.3.1 (Localisation sequence). Let i : Y → X be a closed embedding,
and u : U = X − Y → X be the open complement. Then the following sequence is exact:

CH(Y )
i∗−→ CH(X)

u∗−→ CH(U)→ 0

Proof. The following sequence is

(2.3.b) 0→ Z(Y )
i∗−→ Z(X)

u∗−→ Z(U)→ 0

is (split-)exact. Thus it will suffice to take α ∈ Z(X) such that u∗α = 0 in CH(U), and
find β ∈ Z(Y ) such that α = i∗β in CH(X). There are finitely many integral closed
subschemes Vj of U , and rational functions ϕj ∈ k(Vj)

× such that

u∗α =
∑
j

divϕj ∈ Z(U).

For each j, let Vj be the closure Vj in X, and ψj the rational function on Vj corresponding

to ϕj under the isomorphism k(Vj) ' k(Vj). Then

u∗(α−
∑
j

divψj) = 0 ∈ Z(U).

Using the sequence (2.3.b), we find an element β ∈ Z(Y ) such that

α−
∑
j

divψj = i∗β ∈ Z(X).

It follows that α = i∗β in CH(X). �
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CHAPTER 3

Proper push-forward

1. Distance between lattices

Let R be a local (commutative noetherian) domain of dimension one, and K its
fraction field. Let V be a K-vector space of finite dimension. A lattice in V is a finitely
generated R-submodule M of V such that the induced morphism M ⊗R K → V is
surjective (it is always injective). This means that M contains a K-basis of V .

Example 3.1.1. Let R → S be a finite injective ring morphism. Assume that S is
a domain, with fraction field L. Then the K-vector space L is finite dimensional, and
S is a lattice in L. Indeed the K-algebra S ⊗R K is contained in L, hence it has finite
dimension as a K-vector space and is a domain. Thus S⊗RK is a field, and we conclude
that S ⊗R K = L.

Lemma 3.1.2. (i) If a finitely generated R-submodule M of V contains a lattice N
in V , then M is a lattice in V .

(ii) If M is a lattice in V , and ϕ a K-automorphism of V , then ϕ(M) is a lattice in V .

Proof. (i) : Indeed the morphism N ⊗R K → M ⊗R K → L is surjective, and
therefore so is M ⊗R K → L.

(ii) : Using the commutative square

M ⊗R K //

��

V

ϕ

��
ϕ(M)⊗R K // V

we see that the lower horizontal arrow must be surjective. �

Lemma 3.1.3. Let M,N be lattices in V . Then:

(i) The R-submodule M ∩N is a lattice in V .
(ii) The R-module M/M ∩N has finite length.

Proof. Let m1, · · · ,mn be a set of generators of the R-module M . Since N is a
lattice in V , we can find elements a1, · · · , an ∈ R − {0} such that aimi ∈ N for all
i = 1, · · · , n. Writing a = a1 · · · an ∈ R, we have aM ⊂ M ∩N . Then aM is a lattice in
V by Lemma 3.1.2 (ii), and so is M ∩N by Lemma 3.1.2 (i). This proves (i).

We have dimM/aM ≤ dimR/aR ≤ 0, hence the R-module M/aM has finite length
(Proposition 1.1.3), and so has its quotient M/M ∩N , proving (ii). �

Definition 3.1.4. Let M,N be lattices in V . We define

d(M,N) = lR(M/(M ∩N))− lR(N/(M ∩N)) ∈ Z.
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One sees immediately that:

• We have d(M,N) + d(N,M) = 0.
• If N ⊂M , then d(M,N) = lR(M/N).

Lemma 3.1.5. Let M,N,P be lattices in V . Then

d(M,N) + d(N,P ) = d(M,P ).

Proof. Assume first that P ⊂M ∩N . Then we have exact sequences of R-modules

0→ (M ∩N)/P →M/P →M/(M ∩N)→ 0

and

0→ (M ∩N)/P → N/P → N/(M ∩N)→ 0,

so that, using the additivity of the length,

d(M,N) = lR(M/(M ∩N))− lR(N/(M ∩N))

= lR(M/P )− lR(N/P )

= d(M,P )− d(N,P ),

and the formula is true in this case.
In general (when P 6⊂ M ∩N), the R-submodule Q = P ∩M ∩N is a lattice in V ,

by applying twice Lemma 3.1.3 (i). Using three times the case above, we have

d(M,N) + d(N,P ) = d(M,Q) + d(Q,N) + d(N,Q) + d(Q,P )

= d(M,Q) + d(Q,P )

= d(M,P ). �

Lemma 3.1.6. Let ϕ be a K-automorphism of V . The integer d(M,ϕ(M)) does not
depend on the lattice M in V .

Proof. Let M,N be two lattices in V . Then, by Lemma 3.1.5,

d(M,ϕ(M)) = d(M,N) + d(N,ϕ(N)) + d(ϕ(N), ϕ(M)).

Since ϕ induces isomorphisms

M/M ∩N → ϕ(M)/ϕ(M) ∩ ϕ(N) and N/M ∩N → ϕ(N)/ϕ(M) ∩ ϕ(N),

we see that

d(ϕ(N), ϕ(M)) = d(N,M) = −d(M,N),

and the statement follows. �

Proposition 3.1.7. Let M be a lattice in V , and ϕ a K-automorphism of V . Then

d(M,ϕ(M)) = ordR(detϕ).

Proof. Letting e1, · · · , en ∈M be a K-basis of V , in view of Lemma 3.1.6, we may
replace M by the lattice

⊕
iRei, and assume that e1, · · · , en generate M . If ψ is another

K-automorphism of V , we have, using Lemma 3.1.5, Lemma 3.1.6 and Lemma 3.1.3 (ii),

d(M,ψ ◦ ϕ(M)) = d(M,ϕ(M)) + d(ϕ(M), ψ ◦ ϕ(M)) = d(M,ϕ(M)) + d(M,ψ(M)).

We also have

ordR(det(ψ ◦ ϕ)) = ordR((detψ) · (detϕ)) = ordR(detψ) + ordR(detϕ).
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Therefore each of the two functions

ϕ 7→ d(M,ϕ(M)) and ϕ 7→ ordR(detϕ)

defines a group homomorphism

AutK(V )→ Z.
Since AutK(V ) is generated by automorphisms whose matrices in the basis e1, · · · , en are
elementary, we may assume that the matrix of ϕ is elementary.

If this matrix is permutation then ϕ(M) = M . If for some i, j, we have ϕ(ek) = ek
for all k 6= i, and ϕ(ei) = ei + (a/b)ej for some a, b ∈ R and j 6= i, then replacing ei by
bei (thus modifying M), we may assume that b = 1, and therefore M = ϕ(M). In these
two cases detϕ = ±1 ∈ R×, and we conclude that

d(M,ϕ(M)) = 0 = ordR(detϕ).

Finally assume that the matrix of ϕ is diagonal, with entries (1, · · · , 1, a) with a ∈ K×.
Since we may restrict to a generating set of the group AutK(V ), we may assume that
a ∈ R− {0}. Then ϕ(M) ⊂M and

M/ϕ(M) = R⊕n/(R⊕n−1 ⊕ aR) = R/aR,

so that d(M,ϕ(M)) = l(R/aR). But detϕ = a, hence ordR(detϕ) = ordR(a) = l(R/aR),
as required. �

2. Proper push-forward of principal divisors

Proposition 3.2.1. Let f : Y → X be a proper and surjective morphism. Assume
that Y and X are integral, and that dimY = dimX. Then for any ϕ ∈ k(Y )×, we have

f∗ ◦ divϕ = div
(
Nk(Y )/k(X)(ϕ)

)
∈ Z(X),

where Nk(Y )/k(X) : k(Y )× → k(X)× is the norm of the field extension.

Proof. — Case f is finite. Let x ∈ X be a point of codimension one. We compare
the coefficients at x on the two sides of the equation. Letting A = OX,x. The scheme
f−1 SpecA can be written as SpecB, since it is finite over SpecA. We have dimA =
dimB = 1. Writing ϕ as quotient of elements of B, we may assume that ϕ ∈ B. The
points y ∈ Y such that f(y) = x are in bijective correspondence with the maximal ideals
q of B. On the left hand side, we have (here q runs over the maximal ideals of B)∑

y∈f−1{x}

[k(y) : k(x)] ordy(ϕ) =
∑
q

[B/q : A/mA]l(Bq/ϕBq)

=
∑
q

lA(B/q)l(Bq/ϕBq)

= lA(B/ϕB),

where we used Lemma 1.5.11 with M = B/ϕB for the last equality.
On the right hand side, the coefficient at x is

ordx(detmϕ)

where mϕ is the multiplication by ϕ in the k(X)-algebra k(Y ). We apply Proposition 3.1.7
and Example 3.1.1 for the ring R = A, the lattice B in V = k(Y ).
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— Case f is birational and X is normal. Let x ∈ X be a point of codimension one.
Let y ∈ Y be such that f(y) = x. Then OX,x ⊂ OY,y is a local morphism and OX,x is
a valuation ring of k(X) (it is a discrete valuation ring, being a local integrally closed
domain of dimension one). Thus OX,x = OY,y as subrings of k(X) and in particular y
has codimension one in Y . This proves that the points y ∈ Y such that f(y) = x are in
bijective correspondence with the morphisms SpecOX,x → Y over X, and by the valua-
tive criterion of properness there is exactly one such morphism. Thus f−1{x} = {y} for
some y ∈ Y . From the equality OX,x = OY,y, we deduce that [k(y) : k(x)] = 1, and that
the component of divϕ ∈ Z(Y ) at y is the same as the component divϕ ∈ Z(X) at x.
Therefore f∗ ◦ divϕ = divϕ, as required in this case.

— General case. Let Y ′ → Y be the normalisation of Y (in k(Y )), and X ′ → X
the normalisation of X in k(Y ). By the universal property of the normalisation, the
dominant morphism f lifts to a dominant morphism Y ′ → X ′. We may view ϕ as
element of k(Y ′)× = k(Y )×. Since the morphisms X ′ → X and Y ′ → Y are finite
(we are working with varieties, which are of finite type over a field), and Y ′ → X ′ is
a birational morphism with normal target, we conclude using the two case considered
above. �

Corollary 3.2.2. Let f : Y → X be a proper surjective morphism between integral
varieties, and ϕ ∈ k(X)×. Then, using Definition 1.2.3,

f∗ ◦ div(f∗ϕ) = deg(Y/X) · divϕ ∈ Z(X),

Proof. Let d = deg(Y/X). Assume that dimY = dimX. Then the norm of
f∗ϕ ∈ k(Y )× is ϕd ∈ k(X)×, and we have by Proposition 3.2.1,

f∗ ◦ div(f∗ϕ) = div(ϕd) = ddiv(ϕ) = d · div(ϕ) ∈ Z(X).

Now assume that dimY > dimX, and let W be an integral closed subvariety of codi-
mension one in Y . If f(W ) = X, then the inclusion k(X)→ k(Y ) factors through OY,W ,
and in particular f∗ϕ ∈ (OY,W )× ⊂ k(Y )×, so that ordW (f∗ϕ) = 0. If f(W ) 6= X, then
dimW > dim f(W ), and f∗[W ] = 0 ∈ Z(X). Thus

f∗ ◦ div(f∗ϕ) =
∑
W

f∗
(

ordW (f∗ϕ) · [W ]
)

= 0,

where W runs over the integral closed subvarieties of codimension one in Y �

The next statement is nontrivial only in case dimX = 1.

Lemma 3.2.3. Let X be a integral variety, proper over Spec k, and ϕ ∈ k(X)×. Then,
using the notation of Example 1.2.5

deg ◦divϕ = 0.

Proof. Sending t to ϕ gives rise to a k-scheme morphism Spec k(X)→ Spec k[t, t−1] =
P1 − {0,∞}, and therefore a morphism Spec k(X) → X ×k P1. Let Z be its scheme-
theoretic image; this is an integral closed subscheme of X ×k P1. The image P of Z in P1
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is closed, by the properness of X over k. Thus we have a commutative diagram

Z
f //

p

��

X

g

��
P

h // Spec k

where each morphism if proper and surjective, and f is additionally birational. Since P
is not contained in {0,∞}, the element t maps to an element π ∈ k(P )×. By construction
f∗ϕ = p∗π ∈ k(Z)×. Thus

g∗ ◦ divϕ = g∗ ◦ f∗ ◦ div(f∗ϕ) by Corollary 3.2.2

= g∗ ◦ f∗ ◦ div(p∗π)

= h∗ ◦ p∗ ◦ div(p∗π) by Lemma 1.2.6

= deg(Z/P ) · h∗ ◦ div π by Corollary 3.2.2.

Now either dimP = 0 or P = P1. In the first case div π ∈ Z−1(P ) = 0. If P = P1,
then π = t ∈ k(P1)×, and we have in Z(P1)

h∗ ◦ div π = h∗([0]− [∞]) = [k(0) : k]− [k(∞) : k] = 0. �

Lemma 3.2.3 says that, whenX is a complete variety, the degree map of Example 1.2.5
descends to a group homomorphism

deg : CH(X)→ Z.

Theorem 3.2.4. Let f : Y → X be a proper morphism. Then f∗R(Y ) ⊂ R(X),
which gives a group homomorphism

f∗ : CH•(Y )→ CH•(X).

Proof. As already observed, the statement is certainly true when f is a closed
immersion. Thus we may assume that X,Y are integral and f surjective, take ϕ ∈
k(Y )× and prove that f∗ ◦ divϕ ∈ R(X). If dimY = dimX, the result follows from
Proposition 3.2.1. If dimY > dimX + 1, then f∗ ◦ divϕ ∈ ZdimY−1(X) = 0. Thus we
may assume that dimY = dimX + 1. Then f∗ ◦ divϕ = d · [X], where

d =
∑
y

[k(y) : k(X)] ordy(ϕ),

and y runs over the set of points of codimension one in Y such that f(y) is the generic
point of X. The generic fiber F = Y ×X Spec k(X) is an integral k(X)-variety, and letting
ψ be the image of ϕ under the isomorphism k(Y )× ' k(F )×, we have d = deg ◦ divψ.
This integer vanishes, by Lemma 3.2.3 applied to the k(X)-variety F . �
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CHAPTER 4

Divisor classes

1. The divisor attached to a meromorphic section

Let X be a variety. An OX -module will be called invertible if it is locally free of rank
one, i.e. if each point of X is contained in an open subscheme U such that L restricts to
a free OU -module of rank one on U .

Let L be an invertible OX -module. When i : V → X is a closed or open immersion,
we denote by L|V the invertible OV -module i∗L.

Definition 4.1.1. Assume that X is integral, with generic point η. A regular mero-
morphic section of L is an nonzero element of the generic stalk of L, i.e. an element of
Lη − {0}. The set of regular meromorphic sections of L is noncanonically in bijection
with k(X)×. When s, t are two regular meromorphic sections L, we write s/t ∈ k(X)×

for the unique element such that (s/t) · t = s.

Let x be a point of codimension one in X, and u ∈ Lx a generator of the free OX,x-
module Lx. We may view u as a regular meromorphic section of L, via the injection
Lx → Lη. The integer

ordL,x(s) = ordx(s/u).

does not depend on the choice of u. Indeed, if u′ ∈ Lx is another generator, then u = λ ·u′
for some λ ∈ (OX,x)×. Therefore

s = (s/u) · u = λ · (s/u) · u′

so that s/u′ = λ · (s/u), and

ordx(s/u′) = ordx(λ · (s/u)) = ordx(λ) + ordx(s/u) = ordx(s/u).

When L = OX , the regular meromorphic section s corresponds to an element ϕ ∈
k(X)×, and we have

(4.1.c) ordL,x(s) = ordx(ϕ) ∈ Z.

Lemma 4.1.2. Let X be an integral variety, α : L → M an isomorphism of invert-
ible OX-modules, and s a regular meromorphic section of L. Then for any point x of
codimension one in X, we have

ordL,x(s) = ordM,x(α(s)).

Proof. Let η be the generic point of X, and u a generator of Lx. Then α(u) is a
generator of Mx, and

α(s) = α((s/u) · u) = (s/u) · α(u) ∈Mη,

so that α(s)/α(u) = s/u, and

ordM,x(α(s)) = ordx(α(s)/α(u)) = ordx(s/u) = ordL,x(s). �
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Lemma 4.1.3. Let X be an integral variety, and s a regular meromorphic section of
an invertible OX-module L. Then the set of points x of codimension one in X such that
ordL,x(s) 6= 0 is finite.

Proof. Taking a finite cover of X by affine open subschemes where the restriction
of L is trivial, this follows from Lemma 4.1.2, (4.1.c) and Proposition 2.1.3 �

Definition 4.1.4. Let X be an integral variety, L an invertible OX , and s a regular
meromorphic section of L. We define

divL(s) =
∑
V

ordL,ηV (s)[V ] ∈ Z(X),

where V runs over the integral closed subvarieties of codimension one in X, and ηV
denotes the generic point of V .

Lemma 4.1.5. Let X be an integral variety, and L,M invertible OX-modules.

(i) Let α : L →M be an isomorphism, and s a regular meromorphic section of L. Then

divL(s) = divM(α(s)).

(ii) Let ϕ ∈ k(X)×. Then, viewing ϕ as a regular meromorphic section of OX ,

divOX
(ϕ) = divϕ.

(iii) Let s, resp. t, be a regular meromorphic section of L, resp. M. Then

divL⊗M(s⊗ t) = divL(s) + divM(t).

(iv) Let s, t be two regular meromorphic sections of L. Then

divL(s) = divL(t) + div(s/t).

Proof. (ii) follows from (4.1.c), and (i) from Lemma 4.1.2.
To prove (iii), let x be a point of codimension one in X, u a generator of Lx, and v

a generator of Mx. Then

s⊗ t =
(
(s/u) · u

)
⊗
(
(t/v) · v

)
= (s/u) · (t/v) · u⊗ v,

and therefore

ordL⊗M,x(s⊗ t) = ordx((s⊗ t)/(u⊗ v))

= ordx((s/u) · (t/v))

= ordx(s/u) + ordx(t/v)

= ordL,x(s) + ordM,x(t),

and (iii) follows.
(iv) may be proved simarly, but in fact follows from (i), (ii), (iii). �

Let f : Y → X be a dominant morphism between integral varieties, and L an invert-
ible OX -module. Let ξ and η be the respective generic points of Y and X. There is a
canonical identification

Lη ⊗k(X) k(Y ) = (f∗L)ξ.

Let s a regular meromorphic section of L. Then s⊗1 corresponds to a regular meromorphic
section f∗s of f∗L.

When L = OX , the regular meromorphic section s corresponds to an element ϕ ∈
k(X)×. Then the regular meromorphic section f∗s corresponds to f∗ϕ ∈ k(Y )×.
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Lemma 4.1.6. Let f : Y → X be a proper surjective morphism between integral vari-
eties, L an invertible OX-module, and s a regular meromorphic section of L. Then, using
Definition 1.2.3,

f∗ ◦ divf∗L(f∗s) = deg(Y/X) · divL(s) ∈ Z(X),

Proof. The question is local on X, and we may assume given an isomorphism L →
OX . Then the result follows Lemma 4.1.5, (i), (ii) and Corollary 3.2.2. �

Lemma 4.1.7. Let f : Y → X be a flat morphism having a relative dimension, and L
an invertible OX-module. Assume that X is integral, and let s be a regular meromorphic
section of L. Then

f∗ ◦ divL(s) =
∑
i

mi divf∗i L(f∗i s) ∈ Z(Y ),

where mi = l(OY,Yi
) are the multiplicities of the irreducible components of Yi of Y , and

fi : Yi → X the restrictions of f .

Proof. The question is local on X, and we may assume given an isomorphism L →
OX . Then the result follows Lemma 4.1.5 (i) (ii) and Lemma 2.2.1. �

2. The first Chern class

Let now X be a (possibly nonintegral) variety, and let L be an invertible OX -module.
Assume that V is an integral closed subscheme of X, and choose a regular meromorphic
section s of L|V . The class of divL|V (s) ∈ CH(X) does not depend on the choice of s by
Lemma 4.1.5 (iv). We obtain a group homomorphism

c1(L) : Z•(X)→ CH•−1(X).

Proposition 4.2.1. Let L,M be invertible OX-modules. Then

(i) If L 'M, then c1(L) = c1(M).
(ii) We have c1(L ⊗M) = c1(L) + c1(M).

(iii) We have c1(OX) = 0.

Proof. This follows from Lemma 4.1.5. �

Proposition 4.2.2. Let f : Y → X be a proper morphism, and L an invertible OX-
module. Then

f∗ ◦ c1(f∗L) = c1(L) ◦ f∗ : Z(Y )→ CH(X).

Proof. The statement is true when f is closed embedding by construction of c1(L).
Thus it will suffice to prove that

f∗ ◦ c1(f∗L)[Y ] = c1(L) ◦ f∗[Y ]

when f is surjective, and Y and X are integral. Since f∗[Y ] = deg(Y/X) · [X], the state-
ment follows by choosing a regular meromorphic section s of L, and applying Lemma 4.1.6.

�

Proposition 4.2.3. Let f : Y → X be a flat morphism having a relative dimension,
and L be an invertible OX-module. Then

f∗ ◦ c1(L) = c1(f∗L) ◦ f∗ : Z(X)→ CH(Y ).
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Proof. By Proposition 1.5.9, it will suffice to prove that

f∗ ◦ c1(L)[X] = c1(f∗L)[Y ] ∈ CH(Y )

under the additional assumption that X is integral. After choosing a regular meromorphic
section s of L, this follows from Lemma 4.1.7. �

3. Effective Cartier divisors II

Let X be a variety and D → X an effective Cartier divisor. We denote by O(D)
the invertible OX -module (ID)∨, defined as the dual of the ideal defining D in X. The
natural morphism ID → OX is then a global section 1D of the OX -module O(D). If X
is integral, the section 1D is nonzero at the generic point of X, and we may view 1D as
a regular meromorphic section of O(D).

If f : Y → X is a morphism such that f−1D → Y is an effective Cartier divisor, then
f∗O(D) = O(f−1D). To see this, note that the image If−1D of the morphism f∗ID →
OY is an invertible OY -module, and so is its source. This morphism is injective, since a
surjection between locally free modules of the same rank is necessarily an isomorphism.

This is so in particular when f : Y → X is a dominant morphism between integral
varieties. In this case, we have defined the pull-back f∗1D, and we have 1f−1D = f∗(1D)
as regular meromorphic sections of O(f−1D) = f∗O(D).

Lemma 4.3.1. Let X be an integral variety and D → X an effective Cartier divisor.
Then

divO(D)(1D) = [D] ∈ Z(X),

Proof. Let x be a point of codimension one in X, and a a generator of the OX,x-
module ID,x. The effective Cartier divisor D is defined at the point x by the image
b = 1D(a) of a under the morphism 1D : ID → OX . The coefficient of [D] ∈ Z(X) at x is

l(OX,x/bOX,x) = ordx(b).

On the other hand, the element b ∈ OX,x is also the image of 1D⊗a under the isomorphism
O(D)⊗ ID → OX . Thus, using Lemma 4.1.5 (i) (iii), we have in Z(X)

ordx(b) = ordO(D)⊗ID,x(1D ⊗ a) = ordO(D),x(1D) + ordID,x(a).

Since ordID,x(a) = ordx(a/a) = 0, the statement is proved. �

Proposition 4.3.2. Let f : Y → X be a proper surjective morphism between integral
varieties, and D → X an effective Cartier divisor. Then

f∗[f
−1D] = deg(Y/X) · [D] ∈ Z(D).

Proof. It suffices to prove the equality in Z(X). We have

f∗[f
−1D] = f∗ ◦ divO(f−1D)(1f−1D) by Lemma 4.3.1

= f∗ ◦ divf∗O(D)(f
∗1D)

= deg(Y/X) · divO(D)(1D) by Lemma 4.1.6

= deg(Y/X) · [D] by Lemma 4.3.1 . �
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4. Intersecting with effective Cartier divisors

The support |α| of a cycle α ∈ Z(X) is the union of the integral closed subschemes
V of X such that the coefficient of α at V is non-zero. This is a closed subset of X, since
there are only finitely many such V ’s.

Definition 4.4.1. Let D → X be an effective Cartier divisor. Let V an integral
closed subscheme of X of dimension n. If V 6⊂ D, the closed embedding D ∩ V → V is
an effective Cartier divisor, hence D ∩ V has pure dimension n− 1, and we let

D · [V ] = [D ∩ V ] ∈ CHn−1(D ∩ V ).

If V ⊂ D, then we let

D · [V ] = c1(O(D)|V )[V ] ∈ CHn−1(V ) = CHn−1(D ∩ V ).

Now for an arbitrary cycle

α =
∑
V

mV [V ] ∈ Zn(X)

where V runs over integral closed subschemes of X of dimension n, and mV ∈ Z (nonzero
for only finitely many V ’s), we define

D · α =
∑
V

mVD · [V ] ∈ CHn−1(D ∩ |α|).

In order to improve readability, we will often omit to mention the push-forwards along
closed embeddings.

Lemma 4.4.2. Let D → X be an effective Cartier divisor. If X is equidimensional,
then

D · [X] = [D] ∈ CH(D).

Proof. This is a reformulation of Proposition 1.3.5. �

Lemma 4.4.3. Let D → X be an effective Cartier divisor, and α ∈ Z(X). Then

c1(O(D)||α|)(α) = D · α ∈ CH(|α|).

Proof. We may assume that α = [V ] for an integral closed subscheme V of X. If
V ⊂ D, then the statement is true by Definition 4.4.1. If V 6⊂ D, then V ∩D → V is an
effective Cartier divisor, and the statement follows from Lemma 4.3.1 and the definition
of the first Chern class of a line bundle. �

Proposition 4.4.4. Let f : Y → X be a proper morphism and D → X an effective
Cartier divisor. Let α ∈ Z(Y ). Denote by h : (f−1D) ∩ |α| → D ∩ f(|α|) the induced
morphism. If f−1D → Y is an effective Cartier divisor, then

h∗((f
−1D) · α) = D · f∗α ∈ CH(D ∩ f(|α|)).

Proof. It will suffice to consider the case when α = [W ], for W an integral closed
subscheme of Y . Let V = f(W ). If W ⊂ f−1D, then by Proposition 4.2.2, we have in
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CH(V ) = CH(D ∩ V ),

h∗((f
−1D) · [W ]) = h∗ ◦ c1(O(f−1D)|W )[W ]

= h∗ ◦ c1(h∗(O(D)|V ))[W ]

= c1(O(D)|V ) ◦ h∗[W ] by Proposition 4.2.2

= D · h∗[W ] by Lemma 4.4.3.

If W 6⊂ f−1D, then V 6⊂ D, and we have in CH(D ∩ V )

h∗((f
−1D) · [W ]) = h∗[(f

−1D) ∩W ]

= h∗[f
−1(D ∩ V )]

= deg(W/V )[D ∩ V ] by Proposition 4.3.2

= D · (deg(W/V )[V ])

= D · h∗[W ]. �

Proposition 4.4.5. Let f : Y → X be a flat morphism having a relative dimension.
Let D → X be an effective Cartier divisor, and α ∈ Z(X). Denote by h : f−1(D∩ |α|)→
D ∩ |α| the induced morphism. Then

h∗(D · α) = (f−1D) · f∗α ∈ CH(f−1(D ∩ |α|)).

Proof. It will suffice to consider the case when α = [V ], for V an integral closed
subscheme of X. Let W = f−1V . If V ⊂ D, then by Proposition 4.2.3, we have in
CH(W ) = CH(f−1(D ∩ V )),

h∗(D · [V ]) = h∗ ◦ c1(O(D))[V ]

= c1(h∗O(D)) ◦ h∗[V ]

= c1(h∗O(D))[W ]

= c1(O(f−1D))[W ]

= (f−1D) · [W ].

the last equality holding because W ⊂ f−1D.
If V 6⊂ D, then D∩V → V is an effective Cartier divisor. Since f is flat (f−1D)∩W →

W is again an effective Cartier divisor (Proposition 1.3.2). We have in CH(f−1D∩W ) =
CH(f−1(D ∩ V )

h∗(D · [V ]) = h∗[D ∩ V ] since V 6⊂ D
= [h−1(D ∩ V )] by Lemma 1.5.6

= [(f−1D) ∩W ]

= (f−1D) · [W ] by Lemma 4.4.2

= (f−1D) · f∗[V ]. �



27

CHAPTER 5

Commutativity of divisor classes

1. Herbrand quotients II

Definition 5.1.1. Let A be a (commutative noetherian) ring, M a finitely generated
A-module, and a, b ∈ A. Assume that abM = 0. If the A-modules M{a}/bM and
M{b}/aM have finite length (recall that M{a} denotes the a-torsion submodule of M),
we define the integer

eA(M,a, b) = lA(M{a}/bM)− lA(M{b}/aM).

Otherwise, we set eA(M,a, b) =∞.

Observe that if eA(M,a, b) <∞,

• eA(M,a, b) = −eA(M, b, a).
• If a = 0, then eA(M,a, b) = eA(M, b) (see Definition 1.4.2).

Lemma 5.1.2. If the A-module M has finite length, then eA(M,a, b) = 0.

Proof. We have an exact sequence of A-modules of finite length

0→M{a}/bM →M/bM
a−→M{b} →M{b}/aM → 0,

hence eA(M,a, b) = eA(M, b), which vanishes by Lemma 1.4.3. �

Lemma 5.1.3. Consider an exact sequence of finitely generated A-modules

0→M ′ →M →M ′′ → 0.

such that abM = 0. If two if the three eA(M,a, b), eA(M ′, a, b), eA(M ′′, a, b) are finite,
then so is the third, and

eA(M,a, b) = eA(M ′, a, b) + eA(M ′′, a, b).

Proof. If N is an A-module such that abN = 0, then multiplication with b induces
an exact sequence of A-modules

0→ N{b}/aN → N/aN → N{a} → N{a}/bN → 0.

By the snake lemma, we obtain an exact sequence of A-modules

M ′{a}/bM ′ →M{a}/bM v−→M ′′{a}/bM ′′ →M ′{b}/aM ′ u−→M{b}/aM →M ′′{b}/aM ′′

and in particular keru ' coker v. Exchanging the roles of a and b, we obtain an exact
sequence of A-modules

M ′{b}/aM ′ u−→M{b}/aM →M ′′{b}/aM ′′ →M ′{a}/bM ′ →M{a}/bM v−→M ′′{a}/bM ′′.

The statements follow. �



5. Commutativity of divisor classes 28

Lemma 5.1.4. Let M → N be a morphism of finitely generated A-modules whose
kernel and cokernel have finite length. If abM = 0 and abN = 0, then

eA(M,a, b) = eA(N, a, b).

Proof. Letting I be the image of M → N , we have exact sequences

0→ K →M → I → 0

0→ I → N → C → 0

where K and C have finite length. Thus the statement follows from Lemma 5.1.3 and
Lemma 5.1.2. �

Lemma 5.1.5. Let M be a finitely generated A-module and a, b ∈ A such that abM =
0. Let c ∈ A be such that M/cM has finite length. Then

eA(M, ca, b) = eA(M,a, b)− eA(aM, c).

Proof. Let N ⊂ M be the submodule consisting of those m such that cim = 0 for
some i ∈ N. Then (M/N){c} = 0, so that the module N/cN is a submodule of M/cM ,
hence has finite length. Its quotient ciN/ci+1N thus has finite length. Since N is finitely
generated, there is j such that cjN = 0. Using the exact sequences for i = 0, · · · , j

0→ ciN → ci+1N → ciN/ci+1N → 0

we conclude that N has finite length, hence eA(N, a, b) = 0 by Lemma 5.1.2. Thus by
Lemma 5.1.3, we have eA(M,a, b) = eA(M/N, a, b) and eA(M, ca, b) = eA(M/N, ca, b).
The kernel of the surjective morphism M → a(M/N) induced by multiplication with
a is a submodule of N , hence has finite length as A-module. Using Lemma 1.4.3 and
Lemma 1.4.4, we deduce that eA(aM, c) = eA(a(M/N), c). Thus we may replace M with
M/N , and therefore assume that M{c} = 0. We have an exact sequence of A-modules

0→ aM/acM →M{b}/acM →M{b}/aM → 0.

Now since M{c} = 0, we have M{ac}/bM = M{a}/bM , and using the above exact
sequence it follows that eA(M, ca, b) <∞ if and only if eA(M,a, b) <∞. In this case,

eA(M,ac, b) = lA(M{ac}/bM)− lA(M{b}/acM)

= lA(M{a}/bM)− lA(M{b}/acM) since M{c} = 0

= lA(M{a}/bM)− lA(M{b}/aM)− lA(aM/acM)

= eA(M,a, b)− eA(aM, c),

since (aM){c} ⊂M{c} = 0. �

Lemma 5.1.6. Let x ∈ A and M a finitely generated A-module such that xnM = 0.
Then for any i = 0, · · · , n, we have

eA(M,xi, xn−i) ∈ {0,∞}.

Proof. We prove the statement for all modules M by induction on n. If n = 0,
then M = 0, and the statement is true. Assume that n > 0. By antisymmetry, we may
assume that 2i ≤ n. The statement is clear if i = 0 or if 2i = n. Thus we assume
that eA(M,xi, xn−i) 6= ∞ with 0 < i < n/2, and prove that eA(M,xi, xn−i) = 0. For
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j = 0, · · · , n, let Mj = M{xj}. Observing that Mn−2i ∩ xiM = xiMn−i and xn−iM =
xn−2i(xiM) ⊂ xn−2iMn−i yields an exact sequence of A-modules

0→Mn−2i/x
iMn−i →Mn−i/x

iM
xn−2i

−−−−→Mi/x
n−iM →Mi/x

n−2iMn−i → 0.

Since Mi = Mn−i{xi} and Mn−2i = Mn−i{xn−2i}, additivity of the length function yields

eA(M,xi, xn−i) = eA(Mn−i, x
i, x2n−i) ∈ Z.

Appying the induction hypothesis to the module Mn−i which satisfies xn−iMn−i = 0, we
see that this integer vanishes. �

2. The tame symbol

Let A be a discrete valuation ring, with quotient field K and residue field κ. For any
a, b ∈ K×, the element

(−1)ordA(a)·ordA(b) · aordA(b) · b− ordA(a) ∈ K×

belongs to A× (its valuation is zero). We define an element of κ× as

∂A(a, b) = (−1)ordA(a)·ordA(b) · aordA(b) · b− ordA(a) mod mA.

Observe that:

• The map ∂A : K× ×K× → κ× is bilinear and antisymmetric.
• If a ∈ A×, then ∂A(a, b) = aordA(b).
• If a, b ∈ A×, then ∂A(a, b) = 1.

Theorem 5.2.1. Let A be an integrally closed local domain of dimension two, with
quotient field K. Let a, b ∈ K×. Then∑

p

ordA/p ◦∂Ap
(a, b) = 0

where p runs over the height one primes of A.

This theorem will be proved after a series of lemmas. By bilinearity of ∂Ap
and

linearity of ordA/p, it will suffice to prove the theorem under the assumption that a, b ∈
A−{0}. Let B = A/abA. When p is a prime of height one in A, we consider the A-module

B(p) = im(B → Bp).

Lemma 5.2.2. Let p, q be primes of height one in A. Then

B(p)q =

{
0 if q 6= p

Bp if q = p.

Proof. By exactness of the localisation at q, the Aq-module B(p)q is the image of
the natural morphism Bp → (Bp)q. This morphism is an isomorphism when p = q, and
zero when p 6⊂ q. �

Lemma 5.2.3. Let p be a prime of height one in A and c ∈ A−p. Then the A-module
B(p)/cB(p) has finite length.
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Proof. For any prime q of height one in A, we have, in view of Lemma 5.2.2

(B(p)/cB(p))q = B(p)q/cB(p)q =

{
0 if q 6= p

Bp/cBp if q = p.

Multiplication with c ∈ A−p is an isomorphism on the Ap-module Bp, hence Bp/cBp = 0.
This proves that the A-module M/cM has support contained in {mA}, hence finite length
(being finitely generated). �

Lemma 5.2.4. There are only finitely many primes p of height one in A such that
B(p) 6= 0.

Proof. There are only finitely many primes p of height one in A such that Bp 6= 0:
they correspond to the irreducible components of the effective Cartier divisor defined by
the ideal abA in SpecA (or equivalently to those points x of codimension one in SpecA
such that ordx(ab) 6= 0). Thus the statement follows from Lemma 5.2.2. �

Lemma 5.2.5. The kernel and cokernel of the morphism of A-modules

B →
⊕
p

B(p)

have finite length, where p runs over the height one primes of A.

Proof. The localisation of this morphism at every prime of height one in A is an
isomorphism by Lemma 5.2.2. Thus the support of its kernel, resp. cokernel, contains no
such prime, which means that it is contained in {mA}. It is also finitely generated by
Lemma 5.2.4, hence has finite length. �

Lemma 5.2.6. Let p be a prime of height one in A, and c ∈ A−p. Then the A-module
aB(p)/caB(p) has finite length, and

eA(aB(p), c) = ordAp
(b) ordA/p(c).

Proof. The A-module B(p)/cB(p) has finite length by Lemma 5.2.3, hence the same
is true for its quotient aB(p)/caB(p). We have

eA(aB(p), c) =
∑

height q=1

lAq
(aB(p)q) · lA(A/(q + cA)) by Proposition 1.4.5

= lAp
(aBp) · lA(A/(p + cA)) by Lemma 5.2.2

= lAp
(aBp) · ordA/p(c)

Since a is a nonzero element of the domain Ap, we have isomorphisms of Ap-modules

Ap/bAp ' aAp/abAp ' aBp,

hence lAp
(aBp) = l(Ap/bAp) = ordAp

(b). �

Proposition 5.2.7. Let p be a prime of height one in A. We have

− ordA/p ◦∂Ap
(a, b) = eA(B(p), a, b).

Proof. We first claim that eA(B(p), a, b) <∞. Indeed for any prime q of height one
in A, we have by Lemma 5.2.2

(B(p){a}/bB(p))q =

{
0 if q 6= p

Bp{a}/bBp if q = p
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But Bp = Ap/abAp and a is a nonzero element of the domain Ap. Thus an element
x ∈ Ap satisfies ax ∈ abAp if and only if x ∈ bAp. This proves that Bp{a}/bBp = 0,
so that the A-module B(p){a}/bB(p) has finite length. Of course, the same is true for
B(p){b}/aB(p), which proves our claim.

Let e = ordAp
(a) and f = ordAp

(b). Let c ∈ A − p and a′ = ca, B′ = A/a′bA and
B′(p) = im(B′ → B′p). Then using the elementary properties of the tame symbol ∂

− ordA/p ◦∂Ap
(a′, b) = − ordA/p

(
∂Ap

(a, b)∂Ap
(c, b)

)
= − ordA/p

(
∂Ap

(a, b)cf
)

= − ordA/p ◦∂Ap
(a, b)− f ordA/p(c).

Let I be the kernel of the natural surjective morphism B′ → B. Then cI = 0. Since
c ∈ A − p, this implies that (B′)p → Bp is an isomorphism, hence so is B′(p) → B(p).
Therefore

eA(B′(p), a′, b) = eA(B(p), a′, b)

= eA(B(p), a, b)− eA(aB(p), c) by Lemma 5.2.3 and Lemma 5.1.5

= eA(B(p), a, b)− f ordA/p(c) by Lemma 5.2.6.

Thus while proving the lemma, we may multiply a with an element of A − p. By an-
tisymmetry we may also multiply b by such an element. Choose a uniformiser π ∈ Ap.
Upon multiplying and dividing by elements of A − p, we may assume that π ∈ A, and
that a = πe, b = πf . Now we compute using Lemma 5.1.6

eA(B(p), a, b) = eA(B(p), πe, πf ) = 0.

On the other hand, using the definition of the tame symbol,

− ordA/p ◦∂A(a, b) = − ordA/p ◦∂A(πe, πf ) = ordA/p((−1)ef ) = 0.

This concludes the proof of the proposition. �

Proof of Theorem 5.2.1. We now can combine these lemmas:

eA(B, a, b) = eA

( ⊕
height p=1

B(p), a, b
)

by 5.2.5 and 5.1.4

=
∑

height p=1

eA(B(p), a, b) by 5.1.3

= −
∑

height p=1

ordA/p ◦∂Ap
(a, b) by 5.2.7 .

To conclude the proof observe that eA(B, a, b) = 0. Indeed, since a, b are nonzero elements
of the domain A, it follows that

B{a} = bB and B{b} = aB. �

3. Commutativity

Theorem 5.3.1. Let X be an integral variety of dimension n.

(i) Let L,M be invertible OX-modules and s, resp. t, a regular meromorphic section of
L, resp. M. Then

c1(L) ◦ divM(t) = c1(M) ◦ divL(s) ∈ CHn−2(X).
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(ii) Let M be an invertible OX-module and t a regular meromorphic section of M. Let
D → X be an effective Cartier divisor. Then

D · divM(t) = c1(M|D)[D] ∈ CHn−2(D).

(iii) Let D → X and E → X be effective Cartier divisors. Then

D · [E] = E · [D] ∈ CHn−2(D ∩ E).

Proof. Let us first prove (i). The normalisation π : X ′ → X is a finite birational
morphism. By Proposition 4.2.2 and Lemma 4.1.6, we have

π∗ ◦ c1(π∗L) ◦ divM(π∗t) = c1(L) ◦ π∗ ◦ divM(π∗t) = c1(L) ◦ divM(t),

π∗ ◦ c1(π∗M) ◦ divL(π∗s) = c1(M) ◦ π∗ ◦ divL(π∗s) = c1(M) ◦ divL(s).

Thus we may replace X with X ′, and assume that X is normal.
Let x1, · · · , xp be the points of codimension one in X such that ordL,xi(s) 6= 0 or

ordM,xi(t) 6= 0. For each i = 1, · · · , p, let Vi be the closure of xi, Ai = OX,xi , and let si,
resp. ti, be a generator of the Ai-module Lxi

, resp. Mxi
. Then, in CH(Vi)

c1(L)[Vi] = divL|Vi
(si) and c1(M)[Vi] = divM|Vi

(ti).

Write fi = s/si and gi = t/ti in k(X)× so that

ordL,xi(s) = ordxi(fi) and ordM,xi(t) = ordxi(gi).

We now prove that, in Zn−2(X)

(5.3.d)

p∑
i=1

ordxi
(gi) divL|Vi

(si)− ordxi
(fi) divM|Vi

(ti) =

p∑
i=1

div ◦∂Ai
(fi, gi).

To do so, we compare the coefficients at a point y ∈ X of codimension two. Let A = OX,y
and pi ∈ SpecA the primes corresponding to xi, for i = 1, · · · , p. Let σ, resp. τ , be a
generator of the OX,y-module Ly, resp. My, and f = s/σ ∈ k(X)×, resp. g = t/τ ∈
k(X)×. Let p be a prime of height one in A corresponding to a point x ∈ X. Then
σ, resp. τ , is a generator of the Ap-module Lx, resp. Mx, hence ordL,x(s) = ordAp

(f),
resp. ordM,x(s) = ordAp

(g). These integer vanish unless p ∈ {p1, · · · , pp}. Then by
Theorem 5.2.1, we have

0 =
∑

height p=1

ordA/p ◦∂Ap
(f, g) =

p∑
i=1

ordA/pi
◦∂Ai

(f, g)

Let now ai, bi ∈ (Ai)
× be such that aisi = σ and biti = τ . Then f = a−1i fi ∈ k(X)×

and g = b−1i gi ∈ k(X)×. Thus

0 =

p∑
i=1

ordA/pi
◦∂Ai(a

−1
i fi, b

−1
i gi)

=

p∑
i=1

ordA/pi

(
∂Ai

(fi, gi) · a
− ordxi

(gi)

i · bordxi
(fi)

i

)
=

p∑
i=1

ordA/pi
◦∂Ai(fi, gi)− ordA(ai) ordxi(gi) + ordA(bi) ordxi(fi)

To obtain (5.3.d), observe that the coefficients at y of divL|Vi
(si) and divM|Vi

(ti) are

respectively ordA/pi
(ai) and ordA/pi

(bi). This proves (i).
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Let us now prove (ii). One reduces as above to the case when X is normal using
additionally Proposition 4.3.2 and Proposition 4.4.4. We then set L = O(D) and s = 1D,
and proceed as above with the following difference: when i ∈ {1, · · · , p} is such that xi 6∈
D, we choose si = 1D∩Vi . This ensures that fi = 1 for such i, so that div ◦∂Ai(fi, gi) = 0.
Thus the right hand side of (5.3.d) actually lies in R(D). The class in CH(D) of the left
hand side is

D · divM(t)− c1(M)[D],

and (ii) follows.
The proof of (iii) is similar. We may as above assume that X is normal. We set

L = O(D), s = 1D and M = O(E), t = 1E . When xi 6∈ D, resp. xi 6∈ E, we choose
si = 1D∩Vi

, resp. ti = 1E∩Vi
. Then when xi 6∈ D ∩ E we have either fi = 1 or gi = 1, so

that ∂Ai(fi, gi) = 1, and div ◦∂Ai(fi, gi) = 0. Thus the right hand side of (5.3.d) lies in
R(D ∩ E), while the class of the left hand side is

D · [E]− E · [D],

proving (iii). �

Corollary 5.3.2. Let X be a variety and L an invertible OX-module. Then we have
c1(L)R(X) ⊂ R(X), which gives a morphism

c1(L) : CH•(X)→ CH•−1(X).

Proof. Let V be an integral closed subscheme of X, and ϕ ∈ k(V )×. Let s be a
regular meromorphic section of L|V . We view ϕ as a regular meromorphic section of OV ,
and apply Theorem 5.3.1 (i). We obtain, in CH(V )

c1(L) ◦ divϕ = c1(OX) ◦ divL(s)

which vanishes by Proposition 4.2.1 (iii). �

Corollary 5.3.3. Let X be a variety and L,M an invertible OX-modules. Then

c1(L) ◦ c1(M) = c1(M) ◦ c1(L) : CH•(X)→ CH•−2(X)

Proof. We may assume that X is integral and prove that the two morphisms have
the same effect on the class [X]. Choose a regular meromorphic section s of L, resp. t of
M. Then we have in CH(X) by Theorem 5.3.1 (i):

c1(L) ◦ c1(M)[X] = c1(L) ◦ divM(t) = c1(M) ◦ divL(s) = c1(M) ◦ c1(L)[X]. �

4. The Gysin map for divisors

Definition 5.4.1. Let i : D → X be an effective Cartier divisor. We define a group
homomorphism

i∗ : Z•(X) → CH•−1(D)
α 7→ D · α.

Corollary 5.4.2 (of Theorem 5.3.1). We have i∗R(X) ⊂ R(D).

Proof. Let V be an integral closed subscheme of X, and ϕ ∈ k(V )×. If V ⊂ D,
then by definition

i∗ ◦ divϕ = c1(O(D)) ◦ divϕ ∈ CH(D),
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which vanishes by Corollary 5.3.2. If V 6⊂ D, then by Theorem 5.3.1 (ii) applied to the
variety V

D · divϕ = c1(OD)[D] ∈ CH(D)

which vanishes by Proposition 4.2.1 (iii). �

Definition 5.4.3. The induced morphism i∗ : CH•(X) → CH•−1(D) is called the
Gysin map.

Lemma 5.4.4. Let i : D → X be an effective Cartier divisor. Then

(i) i∗ ◦ i∗ = c1(O(D)|D) : CH(D)→ CH(D).
(ii) i∗ ◦ i∗ = c1(O(D)) : CH(X)→ CH(X).

Proof. The first statement follows from Definition 4.4.1, and the second from Lemma 4.4.3.
�

Lemma 5.4.5. Let i : D → X be an effective Cartier divisor. If X is equidimensional,
then i∗[X] = [D].

Proof. This is a reformulation of Lemma 4.4.2. �

Proposition 5.4.6. Consider a cartesian square

E

g

��

j // Y

f

��
D

i // X

Assume that i and j are both effective Cartier divisors.

(i) If f is proper, then

i∗ ◦ f∗ = g∗ ◦ j∗ : CH(Y )→ CH(D).

(ii) If f is flat and has a relative dimension, then

f∗ ◦ i∗ = j∗ ◦ g∗ : CH(X)→ CH(E).

Proof. This follows from Proposition 4.4.4 and Proposition 4.4.5. �
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CHAPTER 6

Chow groups of bundles

1. Vector bundles, projective bundles

In this section X is a variety.

Vector bundles. Let E be a locally free OX -module of rank r. We consider the
graded OX -algebra

S(E) = SymOX
(E∨)

whose component of degree n is the n-th symmetric power of the dual E∨ = Hom(E ,OX)
of E . Then S(E) is quasi-coherent as an OX -module, and finitely generated as an OX -
algebra. The vector bundle associated with E is the variety

V(E) = SpecX S(E).

The morphism V(E) → X is affine and flat of relative dimension r. The rank of V(E)
is r. The morphism of OX -algebras OX → S(E) has a section, which induces a closed
immersion X → V(E) called the zero section. When E is free, then V(E) ' ArX . A vector
bundle of rank one will be called a line bundle. Note that E can be recovered as the sheaf
of sections of the morphism V(E)→ X. A morphism of locally free OX -modules E → F
induces a morphism V(E)→ V(F) of schemes over X, giving an equivalence between the
categories of locally free modules and vector bundles. This will allows us to talk about
exact sequences of vector bundles for instance. We will write 0 for the vector bundle
V(0) = X, and 1 for V(OX) = X × A1.

Projective bundles. Let E be a locally free OX -module of rank r, and E = V(E).
The projective bundle associated with E (or E) is the variety

P(E) = P(E) = ProjX S(E),

together with a morphism p : P(E)→ X. The variety P(E) is equipped with an invertible
module O(1), corresponding to the graded OX -module S(E)(1), whose component of
degree n is Symn+1

OX
(E∨). Observe that the natural morphisms

E∨ ⊗ Symn
OX

(E∨)→ Symn+1
OX

(E∨)

induce a surjection p∗E∨ → O(1). In other words, we may view O(−1) as a sub-bundle
of p∗E .

When E = 0, then P(E) = ∅. When r = 1, the morphism p : P(E) → X is an
isomorphism; in addition the surjection p∗E∨ → O(1) has invertible modules as source
and target, hence is an isomorphism. If r > 0, the morphism P(E) → X is proper, and
flat of relative dimension r − 1 (but has no canonical section). A injective morphism
E → F of locally free OX -modules induces a surjection S(F) → S(E) of OX -algebras,
and therefore a closed immersion P(E)→ P(F) of schemes over X.
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When E = V(E) is a vector bundle, we denote by E⊕1 the vector bundle V(E ⊕OX).
The morphism E ⊂ E ⊕ OX induces a closed immersion P(E) → P(E ⊕ 1) (over X).
We claim that the complement is the open immersion E → P(E ⊕ 1) (over X). In-
deed S(E ⊕ 1) = S(E)[t] for a global section t of degree one, and the closed immersion
P(E)→ P(E ⊕ 1) is the effective Cartier divisor corresponding to the graded ideal gener-
ated by t. Its open complement is the relative spectrum over X of the algebra S(E)[t](t),
consisting of degree one elements in the algebra S(E)[t] with powers of t inverted. But
the OX -algebra S(E)[t](t) is isomorphic to S(E), as required.

Consider an exact sequence of locally free OX -modules

0→ F → E → L → 0

where L has rank one. Let p : P(E) → X be the morphism. Then we have an exact
sequence of OX -modules

0→ L∨ ⊗OX
Symn−1

OX
(E∨)→ Symn

OX
(E∨)→ Symn

OX
(F∨)→ 0

(the exactness may be checked locally, where E = L ⊕ F). Thus L∨(−1) ⊗OX
S(E) a

graded ideal of S(E), and the corresponding closed subscheme is the effective Cartier
divisor P(F)→ P(E) whose invertible module O(P(F)) is isomorphic to (p∗L)(1).

2. Segre classes

Definition 6.2.1. Let E be a vector bundle of rank r on a variety X, and write
p : P(E ⊕ 1)→ X for the projective bundle. For i ∈ Z, we define the i-the Segre class

si(E) = p∗ ◦ c1(O(1))r+i ◦ p∗ : CH•(X)→ CH•−i(X).

Here we have used the convention that c1(O(1))n = 0 for n < 0. Observe that si(E) = 0
when i 6∈ {−r, · · · ,dimX}. We will write

s(E) =
∑
i∈Z

si(E).

Lemma 6.2.2. We have s(0) = id.

Proof. Indeed when E = 0, then the projection P(E ⊕ 1) → X is an isomorphism
and the line bundle O(1) is trivial. �

Proposition 6.2.3. Let f : Y → X be a morphism of varieties, and E a vector
bundle on X.

(i) If f is proper, then

s(E) ◦ f∗ = f∗ ◦ s(f∗E) : CH(Y )→ CH(X).

(ii) If f is flat and has a relative dimension, then

s(f∗E) ◦ f∗ = f∗ ◦ s(E) : CH(X)→ CH(Y ).

Proof. Consider the cartesian square

P(f∗E ⊕ 1)
g //

q

��

P(E ⊕ 1)

p

��
Y

f // X
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We have g∗O(1) = O(1). Let r be the rank of E.
(i): If f is proper then so is g, and we have, for any i

si(E) ◦ f∗ = p∗ ◦ c1(O(1))r+i ◦ p∗ ◦ f∗
= p∗ ◦ c1(O(1))r+i ◦ g∗ ◦ q∗ by Proposition 1.5.9

= p∗ ◦ g∗ ◦ c1(O(1))r+i ◦ q∗ by Proposition 4.2.2

= f∗ ◦ q∗ ◦ c1(O(1))r+i ◦ q∗ by Lemma 1.2.6

= f∗ ◦ si(f∗E).

(ii): If f is flat and has a relative dimension, then the same is true for g, and we have,
for any i

si(f
∗E) ◦ f∗ = p∗ ◦ c1(O(1))r+i ◦ p∗ ◦ f∗

= p∗ ◦ c1(O(1))r+i ◦ g∗ ◦ q∗ by Proposition 1.5.8

= p∗ ◦ g∗ ◦ c1(O(1))r+i ◦ q∗ by Proposition 4.2.3

= f∗ ◦ q∗ ◦ c1(O(1))r+i ◦ q∗ by Proposition 1.5.9

= f∗ ◦ si(E). �

Lemma 6.2.4. Let E → X be a vector bundle. Then si(E) = 0 for i < 0.

Proof. Let v : V → X be the closed immersion of an integral closed subscheme.
By Proposition 6.2.3 (i), we have s(E)[V ] = v∗ ◦ s(E|V )[V ]. But s(E|V )[V ] belongs to
CHdimV−i(V ), a group which vanishes when i < 0. �

Lemma 6.2.5. Let E and F be two isomorphic vector bundles over X. Then

s(E) = s(F ).

Proof. Let r be the rank of E and F , and p : P(E ⊕ 1)→ X and q : P(F ⊕ 1)→ X
the projective bundles. We have an isomorphism ϕ : P(E ⊕ 1) → P(F ⊕ 1) such that
ϕ∗O(1) = O(1) and q ◦ ϕ = p. In particular ϕ∗ ◦ ϕ∗ = id, and we have for any i

si(E) = p∗ ◦ c1(O(1))r+i ◦ p∗

= q∗ ◦ ϕ∗ ◦ c1(O(1))r+i ◦ ϕ∗ ◦ q∗ by (1.2.6), (1.5.8)

= q∗ ◦ ϕ∗ ◦ ϕ∗ ◦ c1(O(1))r+i ◦ q∗ by (4.2.3)

= q∗ ◦ c1(O(1))r+i ◦ q∗

= si(F ). �

Proposition 6.2.6. Let E and F be two vector bundles on X. Then for any i, j

si(E) ◦ sj(F ) = sj(F ) ◦ si(E).

Proof. Consider the cartesian square

Q
q′ //

p′

��

P(E ⊕ 1)

p

��
P(F ⊕ 1)

q // X
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Let r, resp. s, be the rank of E, resp. F . Then

si(E) ◦ sj(F ) = p∗ ◦ c1(O(1))r+i ◦ p∗ ◦ q∗ ◦ c1(O(1))s+j ◦ q∗

= p∗ ◦ c1(O(1))r+i ◦ q′∗ ◦ p′∗ ◦ c1(O(1))s+j ◦ q∗ by (1.5.9)

= p∗ ◦ q′∗ ◦ c1(q′∗O(1))r+i ◦ c1(p′∗O(1))s+jp′∗ ◦ q∗ by (4.2.2), (4.2.3)

= p∗ ◦ q′∗ ◦ c1(p′∗O(1))s+j ◦ c1(q′∗O(1))r+ip′∗ ◦ q∗ by (5.3.3)

= q∗ ◦ p′∗ ◦ c1(p′∗O(1))s+j ◦ c1(q′∗O(1))r+i ◦ q′∗ ◦ p∗ by (1.2.6), (1.5.8)

= q∗ ◦ c1(p′∗O(1))s+j ◦ p′∗ ◦ q′∗ ◦ c1(q′∗O(1))r+i ◦ p∗ by (4.2.2), (4.2.3)

= q∗ ◦ c1(p′∗O(1))s+j ◦ p∗ ◦ q∗ ◦ c1(q′∗O(1))r+i ◦ p∗ by (1.5.9)

= sj(F ) ◦ si(E). �

Lemma 6.2.7. Let E be a vector bundle over X. Denote by j : P(E) → P(E ⊕ 1) be
the induced closed immersion, and consider the projective bundles p : P(E ⊕ 1)→ X and
q = p ◦ j : P(E)→ X. Then, for any n ≥ 0, we have

j∗ ◦ c1(O(1))n ◦ q∗ = c1(O(1))n+1 ◦ p∗.

Proof. Let V be an integral closed subscheme of X. Then the closed immersions
P(E|V )→ P(E) and P(E ⊕ 1|V )→ P(E ⊕ 1) are compatible with the line bundles O(1).
Replacing X by V , it will suffice to prove that

j∗ ◦ c1(O(1))n[P(E)] = c1(O(1))n+1[P(E ⊕ 1)].

The closed immersion P(E)→ P(E ⊕ 1) is an effective Cartier divisor whose line bundle
O(P(E)) is isomorphic to O(1). Since j∗O(1) = O(1), it follows from Proposition 4.2.2
that j∗ ◦ c1(O(1))n[P(E)] = c1(O(1))n ◦ j∗[P(E)]. But j∗[P(E)] = c1(O(1))[P(E ⊕ 1)] by
Lemma 4.3.1. �

Lemma 6.2.8. Let E → X be a vector bundle of rank r.

(i) Let q : P(E)→ X be the projective bundle. If r > 0, then

si(E) = q∗ ◦ c1(O(1))r−1+i ◦ q∗.
(ii) We have s(E ⊕ 1) = s(E).

Proof. Let p : P(E ⊕ 1)→ X be the projective bundle.
(i): We apply Lemma 6.2.7. Then we have, for any i ≥ 1− r

si(E) = p∗ ◦ c1(O(1))r+i ◦ p∗

= p∗ ◦ j∗ ◦ c1(O(1))r−1+i ◦ q∗

= q∗ ◦ c1(O(1))r−1+i ◦ q∗.
This formula also holds in case i < 1− r ≤ 0, by Lemma 6.2.4.

(ii): Applying (i) to the bundle E ⊕ 1, we have, for any i

si(E ⊕ 1) = p∗ ◦ c1(O(1))(r+1)−1−i ◦ p∗ = si(E). �

When L is an invertible OX -module and L → X the corresponding line bundle, we
will write c1(L) for c1(L).

Lemma 6.2.9. Let L→ X be a line bundle. Then, for every i

si(L) = (−c1(L))i.
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Proof. The morphism q : P(L)→ X is an isomorphism, and O(1) = q∗L∨, where L
is the OX -module of sections of L. In particular q∗ ◦ q∗ = id. We have, for any i,

si(L) = q∗ ◦ c1(O(1))i ◦ q∗ by Lemma 6.2.8 (i)

= q∗ ◦ c1(q∗L∨)i ◦ q∗

= q∗ ◦ q∗ ◦ c1(L∨)i by Proposition 4.2.3

= q∗ ◦ q∗ ◦ (−c1(L))i by Proposition 4.2.1 (ii), (iii)

= (−c1(L))i. �

Lemma 6.2.10. Let E → X be a vector bundle. Then s0(E) = id.

Proof. When r = 0, then P(E ⊕ 1) → X is an isomorphism, and s0(E) = id.
Assume that r > 0. By Proposition 6.2.3 (i), it will suffice to assume that X is integral,
and prove that s0(E)[X] = [X]. As s0(E)[X] belongs to CHdimX(X), the free abelian
group generated by [X], we may write s0(E)[X] = m[X] for some integer m. To prove
that m = 1, we may restrict to an open non-empty subscheme of X, and assume that
E = E′⊕1 for some vector bundle E′ on X. Then the statement follows from Lemma 6.2.8
(ii) and induction on r. �

Proposition 6.2.11. Let E → X be a vector bundle of rank r > 0, and consider the
projective bundle q : P(E)→ X. Then the pull-back

q∗ : CH(X)→ CH(P(E))

is a split monomorphism.

Proof. In view of Lemma 6.2.8 (i) and Lemma 6.2.10, the splitting is given by
q∗ ◦ c1(O(1))r−1. �

Proposition 6.2.12. Consider an exact sequence of vector bundles on X

0→ E → F → G→ 0.

Then we have

s(E) ◦ s(G) = s(F ).

Proof. Let r be the rank of F . First assume that G is a line bundle (so that in
particular r ≥ 1). Let q : P(E ⊕ 1)→ X and p : P(F ⊕ 1)→ X be the projective bundles,
and j : P(E ⊕ 1)→ P(F ⊕ 1) the closed immersion. We claim that

(6.2.e) j∗ ◦ q∗ =
(
c1(O(1)) + c1(p∗G)

)
◦ p∗.

To see this, it suffices to prove that the two morphisms have the same effect on the class
[V ] of an integral closed subscheme V of X. To do so, we may assume that V = X. Since
j is an effective Cartier divisor whose invertible module O(P(E ⊕ 1)) is isomorphic to
p∗G(1) (where G is the OX -module of sections of G), we have

j∗ ◦ q∗[X] = j∗[P(E)]

= c1(p∗G(1))[P(F )] by (4.3.1)

= (c1(O(1)) + c1(p∗G))[P(F )] by (4.2.1) (i) (ii)

= (c1(O(1)) + c1(p∗G)) ◦ p∗[X],
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which proves the claim. Since j∗O(1) = O(1), we have for any i ≥ 0

si(E) = q∗ ◦ c1(O(1))r−1+i ◦ q∗

= p∗ ◦ j∗ ◦ c1(O(1))r−1+i ◦ q∗ by (1.2.6)

= p∗ ◦ c1(O(1))r−1+i ◦ j∗ ◦ q∗ by (4.2.2)

= p∗ ◦ c1(O(1))r−1+i ◦
(
c1(O(1)) + c1(p∗G)

)
◦ p∗ by (6.2.e)

= si(F ) + si−1(F ) ◦ c1(G) by (4.2.3).

This formula also holds for i < 0 by Lemma 6.2.4. It follows that

s(E) = s(F ) ◦ (id +c1(G)).

By Lemma 6.2.9, and since c1(G)n = 0 for n > dimX, we have

(id +c1(G)) ◦ s(G) = (id +c1(G) ◦
∑
i∈Z

(−c1(G))i = id,

and the statement follows in the case when G is a line bundle.
We prove the statement when G is arbitrary for all varieties X simultaneously, by

induction on r. If r = 0 the statement is true by Lemma 6.2.2, since E = F = G = 0.
Assume that r > 0. If G = 0, then E and F are isomorphic, and the statement follows
from Lemma 6.2.2 and Lemma 6.2.5. Thus we may assume that G has rank > 0, and
let f : P(G∨) → X be the projective bundle. Let L → P(G∨) be the line bundle whose
module of sections is O(1). Recalling that O(1) is canonically a quotient of p∗G∨, we
obtain exact sequences of vector bundles over P(G∨)

0→ H → f∗G→ L→ 0

0→M → f∗F → L→ 0

0→ f∗E →M → H → 0

By the induction hypothesis, since the rank of M is r − 1, we have

s(M) = s(f∗E) ◦ s(H)

and by the case of a line bundle treated above

s(f∗G) = s(H) ◦ s(L) and s(f∗F ) = s(M) ◦ s(L).

It follows that

s(f∗F ) = s(f∗E) ◦ s(f∗G).

Therefore, by Proposition 6.2.3 (ii)

f∗ ◦ s(F ) = s(f∗F ) ◦ f∗ = s(f∗E) ◦ s(f∗G) ◦ f∗ = f∗ ◦ s(E) ◦ s(G).

We conclude using the injectivity of f∗ : CH(X)→ CH(P(G∨)) (Proposition 6.2.11), since
G∨ has the same rank as G, which is > 0. �
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3. Homotopy invariance and projective bundle theorem

Proposition 6.3.1. Let v : E → X be a vector bundle. Then the pull-back

v∗ : CH(X)→ CH(E)

is surjective.

Proof. — Case E = A1 ×X and v is the second projection : Let W be an integral
closed subscheme of A1 ×X, and V the closure of its image in X. To prove that [W ] is
in the image of CH(X) → CH(A1 ×X), it will suffice to prove that [W ] is in the image
of CH(V )→ CH(A1 × V ), and we may therefore assume that W → X is dominant, and
that X is integral. Then dimW ≥ dimX; if dimW = dimX + 1, then W = A1×X, and
[W ] = v∗[X]. Thus we may assume that dimW = dimX. We write K = k(X) for the
function field of X. The generic fiber WK = W ×X SpecK is a closed subscheme of A1

K ,
hence is defined by a single polynomial p ∈ K[t]. Since WK 6= A1

K we have p 6= 0, and
thus WK → A1

K is an effective Cartier divisor. Then by Lemma 2.1.5

[WK ] = div p ∈ Z(A1
K).

We may view p as a nonzero element ϕ ∈ k(A1 × X) = K(t). For any integral closed
subscheme Z of A1×X dominating X, the coefficient at [Z] of [W ]− divϕ ∈ Z(A1×X)
coincides with the coefficient at [Z ×X SpecK] of [WK ]− div p ∈ Z(A1

K), which vanishes
by construction. Thus the cycle

[W ]− divϕ ∈ Z(A1 ×X)

lies in the subgroup Z(A1 × Y ), for some closed subscheme Y 6= X of X. Thus

[W ] ∈ im(CH(A1 × Y )→ CH(A1 ×X)).

In view of Proposition 1.5.9, we may conclude by noetherian induction, the statement
being clear when X = ∅.

— Case E = An×X and v is the second projection : Then v may be decomposed as a
sequence of trivial line bundles, and the statement follows from the case considered above.

— General case : We can find a non-empty open subscheme U of X such that the
vector bundle E|U → U is trivial. Let Y be the closed complement of U , endowed
with the reduced scheme structure. Then by Proposition 2.3.1, Proposition 1.5.9 and
Proposition 1.5.8, we have a commutative diagram with exact rows

CH(E|Y ) // CH(E) // CH(E|U ) // 0

CH(Y ) //

(v|Y )∗

OO

CH(X) //

v∗

OO

CH(U) //

(v|U )∗

OO

0

Using noetherian induction, we may assume that (v|Y )∗ is surjective. Since (v|U )∗ is
surjective by the case treated above, it follows from a diagram chase that v∗ is surjective.

�
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Theorem 6.3.2 (Projective bundle Theorem). Let v : E → X be a vector bundle of
rank r, and q : P(E)→ X the associated projective bundle. Then the morphism

θE :

r−1⊕
i=0

CH(X)→ CH(P(E))

given by

(α0, · · · , αr−1) 7→
r−1∑
i=0

c1(O(1))i ◦ q∗(αi)

is bijective.

Theorem 6.3.3 (Homotopy invariance). Let v : E → X be a vector bundle of rank r.
Then the pull-back

v∗ : CH(X)→ CH(E)

is bijective.

Proof of Theorem 6.3.3 and Theorem 6.3.2. The case r = 0 being clear, we
assume that r > 0. Assume that θE(α0, · · · , αr−1) = 0, and let l be the largest integer
such that αl 6= 0, if it exists. Then we have in CH(X)

0 = q∗ ◦ c1(O(1))r−1−l ◦ θE(α0, · · · , αr−1)

=

l∑
i=0

q∗ ◦ c1(O(1))r−1−l+i ◦ q∗(αi)

=

l∑
i=0

si−l(αi) by (6.2.8) (i)

= αl by (6.2.4) and (6.2.10).

Thus an integer l as above does not exist, proving that θE is injective.
Let j : P(E) → P(E ⊕ 1) be the closed embedding, and u : E → P(E ⊕ 1) its open

complement. By Lemma 6.2.7, we have

j∗ ◦ θE(α0, · · · , αr−1) = θE⊕1(0, α0, · · · , αr−1).

In addition, since O(1)|E = u∗O(1) is the trivial line bundle, we have, by Proposition 4.2.3
and Proposition 4.2.1 (iii)

u∗ ◦ c1(O(1)) = c1(O(1)|E) ◦ u∗ = 0.

Thus we have a commutative diagram with exact rows

CH(P(E))
j∗ // CH(P(E ⊕ 1))

u∗ // CH(E) // 0

r−1⊕
i=0

CH(X)
a
//

θE

OO

r⊕
i=0

CH(X)

θE⊕1

OO

b
// CH(X) //

v∗

OO

0

where

a(α0, · · · , αr−1) = (0, α0, · · · , αr−1) and b(α0, · · · , αr) = α0.
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Therefore Theorem 6.3.3 follows from Theorem 6.3.2. Moreover, using the surjectivity of
v∗ obtained in Proposition 6.3.1, we deduce from a diagram chase that

(6.3.f) θE surjective ⇒ θE⊕1 surjective .

We now prove the surjectivity of θE for all varieties X simultaneously, by induction
on the rank r. For a given r > 0 and X, we use noetherian induction. We can find a
non-empty open subscheme U of X such that the vector bundle E|U splits as E′⊕1, for a
vector bundle E′ on U . Let Y be the closed complement of U , endowed with the reduced
scheme structure. Then by Proposition 2.3.1, Proposition 1.5.9 and Proposition 1.5.8, we
have a commutative diagram with exact rows

CH(P(E|Y )) // CH(P(E)) // CH(P(E|U )) // 0

r−1⊕
i=0

CH(Y ) //

θE|Y

OO

r−1⊕
i=0

CH(X) //

θE

OO

r−1⊕
i=0

CH(U) //

θE′⊕1

OO

0

Since the rank of E′ is < r, the morphism θE′ is surjective by induction on r, and so is
θE′⊕1 by (6.3.f). The morphism θE|Y is surjective by noetherian induction, and it follows
from a diagram chase that θE is surjective. �

Example 6.3.4.

CHi(An) =

{
Z · [An] if i = n,

0 otherwise.

CHi(Pn) =

{
Z · [Pi] if 0 ≤ i ≤ n,

0 otherwise.

(Here we Pi denotes the linear subspace of Pn of dimension i).

4. Chern classes

Let E → X be a vector bundle of rank r, and q : P(E)→ X the associated projective
bundle. For any α ∈ CH(X), by the projective bundle Theorem 6.3.2, there are unique
elements

ci(E)(α) ∈ CH(X)

such that
c0(E)(α) = α and ci(E)(α) = 0 for i 6∈ {0, · · · , r},

and

(6.4.g) 0 =
∑
i

c1(O(1))r−i ◦ q∗ ◦ ci(E)(α) ∈ CH(P(E)).

This defines group homomorphisms

ci(E) : CHn(X)→ CHn−i(X),

and we write
c(E) =

∑
i

ci(E).

Proposition 6.4.1. Let E → X be a line bundle with sheaf of sections E. Then
the endomorphism c1(E) defined above coincides with the endomorphism c1(E) defined in
§4.2.
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Proof. Indeed q : P(E)→ X is an isomorphism such that O(1) = q∗E∨. In view of
Proposition 4.2.1(ii) and Proposition 4.2.3, we have

c1(O(1)) ◦ q∗ + q∗ ◦ c1(E) = 0,

proving that c1(E) = c1(E). �

Proposition 6.4.2. Let E → X be a vector bundle of rank r. Then

s(E) ◦ c(E) = c(E) ◦ s(E) = idCH(X) .

Proof. The case r = 0 being clear, let us assume that r > 0 and consider the
morphism q : P(E)→ X. For any k ≥ 1, we apply q∗ ◦c1(O(1))k−1 to the relation (6.4.g).
Using Lemma 6.2.8 (i), we obtain (since ci(E) = 0 for i < 0)

0 =
∑
i≥0

q∗ ◦ c1(O(1))r+k−1−i ◦ q∗ ◦ ci(E) =
∑
i≥0

sk−i(E) ◦ ci(E).

On the other hand, in view of Lemma 6.2.4 and Lemma 6.2.10,∑
i≥0

s−i(E) ◦ ci(E) = s0(E) ◦ c0(E) = id .

Therefore
s(E) ◦ c(E) =

∑
k≥0

∑
i≥0

sk−i(E) ◦ ci(E) = id .

Since s0(E) = id, we see that the morphism s(E) is injective. It follows that c(E)◦s(E) =
id. �

Thus the individual Chern classes can be expressed recursively from the Segre classes
using the formula

(6.4.h) cn(E) = −
n−1∑
i=0

ci(E) ◦ sn−i(E).

Corollary 6.4.3. Let E and F be two vector bundles on X. Then for any i, j

ci(E) ◦ cj(F ) = cj(F ) ◦ ci(E).

Proof. This follows recursively from (6.4.h) and Proposition 6.2.6. �

Corollary 6.4.4. Consider an exact sequence of vector bundles on X

0→ E → F → G→ 0.

Then we have
c(E) ◦ c(G) = c(F ).

Proof. This follows from Proposition 6.2.12. �

Corollary 6.4.5. Let f : Y → X be a morphism, and E be a vector bundle on X.

(i) If f is proper, then

c(E) ◦ f∗ = f∗ ◦ c(f∗E) : CH(Y )→ CH(X).

(ii) If f is flat and has a relative dimension, then

c(f∗E) ◦ f∗ = f∗ ◦ c(E) : CH(X)→ CH(Y ).

Proof. This follows from Corollary 6.4.4, Corollary 6.4.5 and Proposition 6.4.2. �
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Proposition 6.4.6. If the vector bundle E → X is trivial (i.e. isomorphic to ArX →
X) then ci(E) = 0 when i > 0.

Proof. We prove that ci(E)[V ] = 0 when V is an integral closed subscheme of X.
In view of Corollary 6.4.5 we may assume that V = X. Let π : P(E) = Pr−1X → Pr−1 be
the projection. Then in CH(P(E))

c1(O(1))r[Pr−1X ] = c1(π∗O(1))r ◦ π∗[Pr−1] = π∗ ◦ c1(O(1))r[Pr−1]

which vanishes, since c1(O(1))r[Pr−1] ∈ CH−1(Pr−1) = 0. The result follows from the
definition of the Chern classes (6.4.g). �
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