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CHAPTER 1

Associated primes

Basic references are [Bou98, Bou06, Bou07], [Ser00], and [Mat89].

All rings are commutative, with unit, and noetherian. A local ring is always nonzero.

We will use the convention that R will denote a (noetherian, commutative, unital)
ring, A a local ring, m its maximal ideal, and k its residue field. The letter M will either
denote a R-module, or an A-module. A prime will mean a prime ideal of R, or of A.
When p is a prime, we denote by κ(p) the field Rp/(pRp), or Ap/(pAp).

1. Support of a module

Definition 1.1.1. Let M be an R-module, and m ∈M . The annihilator Ann(m) is
the set of elements x ∈ R such that xm = 0. This is an ideal of R. We write Ann(M), or
AnnR(M), for the intersection of the ideals Ann(m), where m ∈M .

Definition 1.1.2. The set of prime ideals of R is denoted Spec(R). The support of
an R-module M , denoted Supp(M), or SuppR(M), is the subset of of Spec(R) consisting
of those primes p such that Mp 6= 0.

Observe that if p ∈ Supp(M) and q ∈ Spec(R) with p ⊂ q, then q ∈ Supp(M).

Lemma 1.1.3. The support of M is the set of primes containing the annihilator of
some element of M .

Proof. Let p ∈ Spec(R). Then Mp 6= 0 if and only if there exists m ∈M such that
tm 6= 0 for all t 6∈ p, or equivalently Ann(m) ⊂ p. �

Lemma 1.1.4. Let M be a finitely generated R-module. Then Supp(M) is the set of
primes containing Ann(M).

Proof. Since for anym ∈M , we have Ann(M) ⊂ Ann(m), it follows from Lemma 1.1.3
that any element of Supp(M) contains Ann(M) (we did not use the assumption that M
is finitely generated).

Conversely assume that M is finitely generated, and let p be a prime containing
Ann(M). We claim that there is m ∈M such that Ann(m) ⊂ p; by Lemma 1.1.3 this will
show that p ∈ Supp(M). Assuming the contrary, let m1, · · · ,mn be a finite generating
family for M . We can find si ∈ Ann(mi) such that si 6∈ p, for i = 1, · · · , n. Then the
product s1 · · · sn belongs to Ann(M), hence to p. Since p is prime, it follows that sj ∈ p
for some j, a contradiction. �

Lemma 1.1.5. Consider an exact sequence of R-modules:

0→M ′ →M →M ′′ → 0.
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Then Supp(M) = Supp(M ′) ∪ Supp(M ′′).

Proof. For every prime p, we have an exact sequence

0→M ′p →Mp →M ′′p → 0,

and therefore Mp = 0 if and only if M ′p = 0 and M ′′p = 0. �

Lemma 1.1.6 (Nakayama’s Lemma). Let (A,m) be a local ring, and M a finitely
generated A-module. If mM = M then M = 0.

Proof. Assume that M 6= 0. Let M ′ be a maximal proper (i.e. 6= M) submodule
of M , and M ′′ = M/M ′ (if no proper submodule were maximal, then we could build
an infinite ascending chain of submodules in M , a contradiction since A is noetherian
and M finitely generated). Then by maximality of M , the module M ′′ is simple, i.e. has
exactly two submodules (0 and M ′′). But a simple module is isomorphic to A/m (it is
generated by a single element, hence is of the type A/I for an ideal I; but A/I is simple
if and only if I = m). Therefore mM ′′ = 0, hence mM ⊂ M ′. This is a contradiction
with mM = M . �

Definition 1.1.7. If (A,m) and (B, n) are two local rings, a ring morphism φ : A→ B
is called a local morphism if φ(m) ⊂ n.

Lemma 1.1.8. Let A → B be a local morphism of local rings, and M a finitely
generated A-module. If M ⊗A B = 0, then M = 0.

Proof. Assume that M 6= 0 and let k be the residue field of A. By Nakayama’s
Lemma 1.1.6, the k-vector space M ⊗A k is nonzero hence admits a one-dimensional
quotient. This gives a surjective morphism of A-modules M → k. Then k⊗AB vanishes,
being a quotient of M ⊗AB. But since A→ B is local, the residue field of B is a quotient
of k ⊗A B, a contradiction. �

Proposition 1.1.9. Let ϕ : R → S be a ring morphism, and M a finitely generated
R-module. Then

SuppS(M ⊗R S) = {q ∈ Spec(S) | ϕ−1q ∈ SuppR(M)}.

Proof. Let q ∈ Spec(S) and p = ϕ−1q. Then the morphism Rp → Sq is local. We
have an isomorphism of Sq-modules (M ⊗R S)q 'Mp⊗Rp

Sq, and the result follows from
Lemma 1.1.8. �

Corollary 1.1.10. Let M be a finitely generated R-module, and I an ideal of R.
Then

SuppR(M/IM) = {p ∈ Supp(M) | I ⊂ p}.

Proof. Let ϕ : R → R/I be the quotient morphism. Any prime p containing I
may be written as ϕ−1q for some q ∈ Spec(R/I). If in addition p ∈ Supp(M), then by
Proposition 1.1.9 we have q ∈ SuppR/I(M/IM). By Lemma 1.1.3 there is m ∈ M/IM

such that AnnR/I(m) ⊂ q, hence AnnR(m) = ϕ−1 AnnR/I(m) ⊂ ϕ−1q = p, proving that
p ∈ SuppR(M/IM). This proves one inclusion. The other inclusion is clear. �
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2. Associated primes

Definition 1.2.1. A prime p of R is an associated prime of M if there is m ∈ M
such that p = Ann(m). The set of associated primes is written Ass(M), or AssR(M).

In other words we have p ∈ Ass(M) if and only if there is an injective R-module
morphism R/p→M .

Proposition 1.2.2. Any maximal element of the set {Ann(m)|m ∈ M,m 6= 0},
ordered by inclusion, is prime.

Proof. Let I = Ann(m) be such a maximal element. Let x, y ∈ R, and assume
that xy ∈ I. If y 6∈ I, then ym 6= 0. Then I = Ann(m) ⊂ Ann(ym). By maximality
I = Ann(ym). Since xym = 0, we have x ∈ Ann(ym), hence x ∈ I. �

Corollary 1.2.3. We have M 6= 0 if and only if Ass(M) 6= ∅.

Proof. Since R is noetherian, the set of Proposition 1.2.2 admits a maximal element
as soon as it is not empty. �

Lemma 1.2.4. Let p be a prime in R. Then AssR(R/p) = {p}.

Proof. Let m ∈ R/p be a nonzero element. Then p ⊂ AnnR(m). Conversely, let
x ∈ AnnR(m). If r ∈ R − p is the preimage of m ∈ R/p, we have xr ∈ p, and since p is
prime, it follows that x ∈ p. Thus p = AnnR(m). �

Proposition 1.2.5. Consider an exact sequence of R-modules:

0→M ′ →M →M ′′ → 0.

Then Ass(M ′) ⊂ Ass(M) ⊂ Ass(M ′) ∪Ass(M ′′).

Proof. If p ∈ Ass(M ′), then M ′ contains a module isomorphic to R/p. Since
M ′ ⊂M , it follows that M also contains such a module, hence p ∈ Ass(M).

Now let p ∈ Ass(M). Then M contains a submodule E isomorphic to R/p. By
Lemma 1.2.4 we have Ass(E) = {p}. Let F = M ′ ∩ E. The inclusion proved above
implies that

Ass(F ) ⊂ Ass(E) = {p} and Ass(F ) ⊂ Ass(M ′).

If F 6= 0, we have Ass(F ) 6= ∅ by Corollary 1.2.3, so that Ass(F ) = {p}, and therefore
p ∈ Ass(M ′). If F = 0, then the morphism E →M ′′ is injective, so that {p} = Ass(E) ⊂
Ass(M ′′). �

Lemma 1.2.6. Let Mα be a family of submodules of M such that M = ∪αMα. Then

Ass(M) =
⋃
α

Ass(Mα).

Proof. Since Mα ⊂ M , we have Ass(Mα) ⊂ Ass(M). Conversely if p = Ann(m) ∈
Ass(M), then there is α such that m ∈Mα. Then p ∈ Ass(Mα). �

Proposition 1.2.7. Let Φ ⊂ Ass(M). Then there is a submodule N of M such that
Ass(N) = Φ and Ass(M/N) = Ass(M)− Φ.
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Proof. Consider the set Σ of submodules P of M such that Ass(P ) ⊂ Φ. This
set is non-empty since 0 ∈ Σ, and ordered by inclusion. Moreover Σ is stable under
taking reunions of totally ordered subsets by Lemma 1.2.6. By Zorn’s lemma, we can
find a maximal element N ∈ Σ (when M is finitely generated over the noetherian ring R,
we do not need Zorn’s lemma). Let p ∈ Ass(M/N). Then M/N contains a submodule
isomorphic to R/p, of the form N ′/N with N ( N ′ ⊂ M . By Proposition 1.2.5 and
Lemma 1.2.4, we have

Ass(N ′) ⊂ Ass(N) ∪Ass(N ′/N) ⊂ Φ ∪ {p}.

By maximality of N , we have Ass(N ′) 6⊂ Φ. It follows that p 6∈ Φ and p ∈ Ass(N ′). Since
N ′ is a submodule of M , we have Ass(N ′) ⊂ Ass(M), and therefore p ∈ Ass(M) − Φ.
Thus we have inclusions

Ass(M/N) ⊂ Ass(M)− Φ and Ass(N) ⊂ Φ.

Since Ass(M) ⊂ Ass(N) ∪ Ass(M/N) by Proposition 1.2.5, the above inclusions are in
fact equalities. �

Definition 1.2.8. An element of R is called a zerodivisor in M if it annihilates a
nonzero element of M , a nonzerodivisor otherwise.

Any element of an associated prime of M is a zerodivisor in M . The converse is true:

Lemma 1.2.9. The set of zerodivisors in M is the union of the associated primes of
M .

Proof. Assume that r ∈ Ann(x) with x ∈ M − 0. Then Ann(x) is contained in
a maximal element of the set {Ann(m)|m ∈ M,m 6= 0} (otherwise we could construct
an ascending chain of ideals in the noetherian ring R). Proposition 1.2.2 says that this
maximal element is an associated prime of M . �

Recall that when S is a multiplicatively closed subset of R, the map p 7→ S−1p induces
a bijection

{p ∈ Spec(R) | p ∩ S = ∅} ∼−→ Spec(S−1R).

Proposition 1.2.10. Let S be a multiplicatively closed subset of R. Then

AssS−1R(S−1M) = {S−1p | p ∈ AssR(M) and p ∩ S = ∅}.

Proof. If M contains an R-submodule isomorphic to R/p, then (by exactness of the
localisation) S−1M contains an (S−1R)-submodule isomorphic to S−1(R/p). The latter
is isomorphic to (S−1R)/(S−1p).

Conversely, as recalled above any element of AssS−1R(S−1M) is of the form S−1p
for a unique p ∈ Spec(R) satisfying S ∩ p = ∅. We need to prove that p ∈ AssR(M).
Let m ∈ M and s ∈ S be such that S−1p = AnnS−1R(m/s). Let p1, · · · , pn be a set of
generators of the R-module p. For every i = 1, · · · , n, we have pim/s = 0 in S−1M , which
means that we can find ti ∈ S such that tipim = 0 in M . Let m′ = t1 · · · tnm ∈M . Since
each pi belongs to AnnR(m′), it follows that p ⊂ AnnR(m′). Conversely if x ∈ AnnR(m′),
then xt1 · · · tn/1 ∈ AnnS−1R(m/s) = S−1p. Thus uxt1 · · · tn ∈ p for some u ∈ S. Since
ut1 · · · tn ∈ S and S ∩ p = ∅, it follows from the primality of p that x ∈ p. Therefore
AnnR(m′) = p, and p ∈ AssR(M). �
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3. Support and associated primes

Proposition 1.3.1. The set Supp(M) is the set of primes of R containing an element
of Ass(M).

Proof. If p contains an associated prime Ann(m) for some m ∈ M , then p ∈
Supp(M) by Lemma 1.1.3.

Let now p ∈ Supp(M). Then Mp 6= 0, hence by Corollary 1.2.3 we can find a prime
in AssRp

(Mp), which corresponds by Proposition 1.2.10 to a prime q ∈ AssR(M) such
that q ⊂ p. �

Corollary 1.3.2. We have Ass(M) ⊂ Supp(M), and these sets have the same
minimal elements.

Corollary 1.3.3. Minimal elements of Supp(M) consist of zerodivisors in M .

Proof. Combine Proposition 1.3.1 with Lemma 1.2.9. �

Definition 1.3.4. The non-minimal elements of Ass(M) are called embedded primes
of M .

Proposition 1.3.5. Assume that M is finitely generated. Then there is a chain of
submodules

0 = M0 (M1 ( · · · (Mn = M

such that Mi/Mi−1 ' R/pi with pi ∈ Spec(R) for i = 1, · · · , n. We have

Ass(M) ⊂ {p1, · · · , pn} ⊂ Supp(M),

and these sets have the same minimal elements.

Proof. Assume that we have constructed a chain

0 = M0 (M1 ( · · · (Mj ⊂M
such that Mi/Mi−1 ' R/pi with pi prime, for i = 1, · · · , j. If Mj = M , then the first part
of the statement is proved. Otherwise, by Corollary 1.2.3 we can find pj+1 ∈ Ass(M/Mj).
Thus M/Mj contains a submodule isomorphic to R/pj+1, which is necessarily of the form
Mj+1/Mj with Mj ( Mj+1 ⊂ M . This process must stop, since R is noetherian and M
finitely generated. This proves the first part.

By Proposition 1.2.5, we have Ass(Mi) ⊂ Ass(Mi−1) ∪ Ass(R/pi). We obtain that
Ass(M) ⊂ {p1, · · · , pn} using Lemma 1.2.4 and induction on i.

By Lemma 1.1.5, we have Supp(R/pi) ∪ Supp(Mi−1) ⊂ Supp(Mi). In particular
pi ∈ Supp(R/pi) ⊂ Supp(Mi). Since Mi ⊂ M , we have Supp(Mi) ⊂ Supp(M). This
proves that {p1, · · · , pn} ⊂ Supp(M).

The last statement follows from Proposition 1.3.1. �

Corollary 1.3.6. Assume that M is finitely generated. Then:

(i) The set Ass(M) is finite.
(ii) The set of minimal elements of Supp(M) is finite.

Corollary 1.3.7. Assume that M is finitely generated and nonzero. Then Supp(M)
possesses at least one minimal element.

Remark 1.3.8. Corollary 1.3.7 may also be proved directly using Zorn’s Lemma.
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CHAPTER 2

Krull dimension

1. Dimension of a module

Definition 2.1.1. The length of a chain of primes p0 ( · · · ( pn in R is the integer
n. The dimension of a finitely generated R-module M is the supremum of the lengths
of the chains of primes in Supp(M). It is denoted dimM , or dimRM . The height of a
prime p of R is the supremum of the lengths n of chains p0 ( · · · ( pn = p of primes in
R. In other words:

height p = dimRp.

The dimension of the zero module is −∞. By Lemma 1.1.4, we have dimM =
dimR/Ann(M).

Remark 2.1.2. Note that dimR/p+dimRp is the supremum of the lengths of chains
of primes of R with p appearing in the chain, so that

dimR/p + dimRp ≤ dimR.

Later we will provide conditions on R ensuring that it is an equality.

Proposition 2.1.3. Let R → S be a ring homomorphism. Let M be an S-module,
finitely generated as an R-module. Then

dimRM = dimSM.

Proof. Let m1, · · · ,mn be generators of the S-module M . The morphism of S-
modules S → Mn sending s to (sm1, · · · , smn) has kernel AnnS(M). This makes
S/AnnS(M) an S-submodule of Mn, which is therefore finitely generated as an R-module
(R is noetherian). The ring morphism R/AnnR(M)→ S/AnnS(M) is injective, and, as
we have just seen, integral. In this situation chains of primes are in bijective correspon-
dence (see e.g. [AM69, Corollary 5.9 and Theorem 5.10]). �

Proposition 2.1.4. Let M be a finitely generated R-module. Then

dimM = max
p∈Ass(M)

dimR/p = max
p∈Supp(M)

dimR/p.

Proof. This follows from Lemma 1.1.4 and Proposition 1.3.1. �

2. Length of a module

Definition 2.2.1. The length of a chain of submodules 0 = M0 ( · · · (Mn = M is
the integer n. The chain is called maximal if for each i there is no submodule N satisfying
Mi ( N ( Mi+1. The length of an R-module M is the supremum of the lengths of the
chains of submodules of M . It is denoted lengthM .

The zero module is the only module of length zero.
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Lemma 2.2.2. Consider an exact sequence of R-modules

0→M ′ →M →M ′′ → 0.

Then we have lengthM = lengthM ′ + lengthM ′′.

Proof. If lengthM ′ = ∞ or lengthM ′′ = ∞, then lengthM = ∞. Assume that
lengthM ′ = e < ∞ and lengthM = ∞. Let n be an integer. We may find a chain
M0 ( · · · ( Mn+e in M . Let M ′i = Mi ∩M ′ and M ′′i = Mi/M

′
i . There are at least

n indices i such that M ′i = M ′i+1, and for such i we have M ′′i ( M ′′i+1. Thus from the
family M ′′i we may extract a chain of length n of submodules of M ′′. This proves that
lengthM ′′ ≥ n. Since n was arbitrary, we deduce that lengthM ′′ =∞.

So we may assume that all modules have finite length. The statement is true if
lengthM ′ = lengthM or if lengthM ′′ = lengthM , for then M = M ′ or M = M ′′. Thus
we may assume that lengthM ′ < lengthM and lengthM ′′ < lengthM , and proceed by
induction on lengthM . Let 0 = M0 ( · · · ( Mr = M be a chain of maximal length, so
that r = lengthM . Let N = Mr−1. Then lengthN = lengthM−1, and lengthM/N = 1.
Form the commutative diagram with exact rows and columns

0

��

0

��

0

��
0 // N ′ //

��

N //

��

N ′′ //

��

0

0 // M ′ //

��

M //

��

M ′′ //

��

0

0 // P ′ //

��

P //

��

P ′′ //

��

0

0 0 0

Then lengthP = 1, hence either P ′ = 0 or P ′ = P . In any case, we have

lengthP ′ + lengthP ′′ = 1.

Then, using induction

lengthM = lengthN + 1

= lengthN ′ + lengthN ′′ + lengthP ′ + lengthP ′′

= lengthM ′ + lengthM ′′. �

Proposition 2.2.3. The length of any maximal chain of submodules of M is equal
to the length of M .

Proof. If M contains an infinite chain, then lengthM = ∞. Let 0 = M0 ( · · · (
Mr = M be a maximal chain. We prove that r = lengthM by induction on r. If r = 0,
then M = 0, hence lengthM = 0. Assume that r > 0, and let N = Mr−1. We have
lengthM/N = 1 by maximality of the chain. In addition, the chain 0 = M0 ( · · · (
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Mr−1 = N is maximal in N , so that lengthN = r − 1 by induction. Therefore, by
Lemma 2.2.2

lengthM = lengthN + lengthM/N = r − 1 + 1 = r. �

Lemma 2.2.4. Let R be an integral domain. Then R has finite length as an R-module
if and only if it is a field.

Proof. If R is a field, it has exactly two ideals (0 and R), and thus has length 1.
Now assume that R has finite length, and let x ∈ R − {0}. The sequence of ideals

· · · ⊂ xi+1R ⊂ xiR ⊂ · · · ⊂ R must stabilise, hence xn = axn+1 for some n ∈ N and some
a ∈ R. Thus xn(1 − ax) = 0. If R is an integral domain then ax = 1, showing that x is
invertible in R. �

Lemma 2.2.5. Assume that M is finitely generated. Then dimM = 0 if and only if
M is nonzero and has finite length.

Proof. We may assume that M 6= 0. Let us choose Mi, pi as in Proposition 1.3.5.
Then by induction M has finite length if and only if each R/pi has finite length. This is
so if and only if each pi is a maximal ideal of R by Lemma 2.2.4. Since {p1, · · · , pn} and
Supp(M) have the same minimal elements, each pi is maximal if and only if Supp(M)
consists of maximal ideals of R, or equivalently dimM = 0. �

3. Principal ideal Theorem

Definition 2.3.1. When S is a subset of R, and p ∈ Spec(R), we say that p is
minimal over S if it is a minimal element of the set of primes containing S.

Theorem 2.3.2 (Krull). Assume that R is an integral domain. Let x ∈ R−{0}, and
p be a prime minimal over {x}. Then height p = 1.

Proof. The ring Rp is an integral domain, and the image of x in Rp is nonzero.
Thus we may replace R with Rp, and assume that R is local with maximal ideal p. Let
q be a prime such that q ( p. It will suffice to prove that q = 0. We view R as a subring
of Rq. For each integer n ≥ 0, we consider the ideal of R defined as

qn = (qnRq) ∩R = {u ∈ R | su ∈ qn for some s ∈ R− q},
(and called the n-th symbolic power of the ideal q). The ring R/xR has dimension zero
by minimality of p, hence finite length by Lemma 2.2.5. It follows that the chain of ideals
· · · ⊂ qn+1/(qn+1 ∩ xR) ⊂ qn/(qn ∩ xR) ⊂ · · · of R/xR must stabilise. Therefore we can
find an integer n such that qn ⊂ qn+1 + xR. Thus for any y ∈ qn, we may find a ∈ R
such that y− ax ∈ qn+1. Note that x 6∈ q by minimality of p, hence x becomes invertible
in Rq. But ax ∈ qn ⊂ qnRq, and therefore a = axx−1 ∈ qnRq. Since a ∈ R, it follows
that a ∈ qn. We have proved that

qn = qn+1 + xqn.

Consider the finitely generated R-module N = qn/qn+1. We have xN = N with x
in the maximal ideal p of R. Applying Nakayama’s Lemma 1.1.6 we obtain that N = 0,
or equivalently qn = qn+1. Observe that qmRq = qmRq = (qRq)m for any m. Thus
(qRq)n = (qRq)n+1. We now apply Nakayama’s Lemma 1.1.6 to the finitely generated
Rq-module (qRq)n and conclude that (qRq)n = 0. This shows that any element of the
maximal ideal qRq of Rq is nilpotent; but Rq is a domain, so that qRq = 0, and finally
q = 0. �
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Lemma 2.3.3. Let p0 ( · · · ( pn be a chain of primes, and let x ∈ pn. Then we can
find a chain of primes p′0 ( · · · ( p′n with p0 = p′0, pn = p′n, and x ∈ p′1.

Proof. We proceed by induction on n, and we may assume that n ≥ 2. It will
suffice to find a prime p′n−1 containing x and such that pn−2 ( p′n−1 ( pn (then we
find by induction a chain of primes p′0 ( · · · ( p′n−2 such that p0 = p′0, p′n−2 ( p′n−1,
and x ∈ p′1). If x ∈ pn−1, we may take p′n+1 = pn+1. Thus we assume that x 6∈ pn−1.
Then we can find a prime p′n−1 containing {x} ∪ pn−2, contained in pn, and minimal
for these properties (it corresponds to a minimal element of the support of the Rpn-
module Rpn

/(pn−2Rpn
+ xRpn

), which exists by Corollary 1.3.7 since pn−2Rpn
+ xRpn

⊂
pnRpn

6= Rpn
). Then the prime ideal p′n−1/pn−2 of R/pn−2 is minimal over the image

of x in R/pn−2, and therefore has height 1 by Theorem 2.3.2. Since the prime ideal
pn/pn−2 of R/pn−2 has height ≥ 2, it cannot be equal to p′n−1/pn−2. Thus we have
pn−2 ( p′n−1 ( pn, with x ∈ p′n−1, as required. �

Proposition 2.3.4. Let (A,m) be a local ring, x ∈ m, and M a finitely generated
A-module. Then

dimM/xM ≥ dimM − 1,

with equality if and only x belongs to no prime p ∈ Supp(M) such that dimA/p = dimM .

Proof. Let p0 ( · · · ( pn be a chain of primes in Supp(M). Replacing pn with m,
we may assume that pn = m. By Lemma 2.3.3 we can assume that x ∈ p1. This gives a
chain of primes p1 ( · · · ( pn of length n−1 in Supp(M)∩Supp(A/xA) = Supp(M/xM)
(the last equality follows from Corollary 1.1.10), which proves that dimM/xM ≥ n− 1.

Now a prime p ∈ Supp(M) contains x if and only if p ∈ Supp(M/xM) by Corol-
lary 1.1.10. Thus the second statement follows from Proposition 2.1.4 applied to the
module M/xM . �

Corollary 2.3.5. Let (A,m) be a local ring and M a finitely generated A-module.
Let x ∈ m be a nonzerodivisor in M . Then dimM/xM = dimM − 1.

Proof. This follows from Corollary 1.3.3 and Proposition 2.3.4. �

4. Flat base change

Definition 2.4.1. An R-module M is called flat if for every exact sequence of R-
modules N1 → N2 → N3 the induced sequence M ⊗R N1 → M ⊗R N2 → M ⊗R N3 is
exact. We say that a ring morphism R→ S is flat if S is flat as an R-module.

Lemma 2.4.2. Let ϕ : (A,m)→ (B, n) be a flat local morphism. Then

(i) For any A-module M , the morphism M → B ⊗AM is injective.
(ii) The morphism SpecB → SpecA is surjective.

Proof. (i): Let m ∈M − {0}. The ideal I = Ann(m) is contained in m. The exact

sequence I → A
m−→M induces by flatness an exact sequence B⊗A I → B

1⊗m−−−→ B⊗AM .
The image of B ⊗A I → B is the ideal J generated by ϕ(I) in B. Since ϕ is local and
I ⊂ m, we have J ⊂ n. If 1⊗m = 0 ∈ B ⊗AM , then B = J , a contradiction.

(ii): Let p ∈ Spec(A). Then κ(p)→ B⊗Aκ(p) is injective by (i), hence B⊗Aκ(p) 6= 0.
Thus Spec(B ⊗A κ(p)) 6= ∅, which means that there is q ∈ SpecB such that ϕ−1q = p
(by the description of the set of primes in a quotient or a localisation). �
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Proposition 2.4.3 (Going down). Let ρ : R → S be a flat ring morphism. Let
q ∈ Spec(S) and p′ ∈ Spec(R) be such that p′ ⊂ ρ−1q. Then we may find q′ ∈ Spec(S)
such that q′ ⊂ q and ρ−1q′ = p′.

Proof. The morphism Rp → Sq is flat and local. Therefore by Lemma 2.4.2 (ii) the
prime p′Rp has a preimage in Spec(Sq), necessarily of the form q′Sq with q′ ⊂ q. The
primes ρ−1q′ and p′ coincide because they are contained in p and localise to the same
prime of Rp. �

Corollary 2.4.4. Let R→ S be a flat ring morphism and M a finitely generated R-
module. Then the morphism SpecS → SpecR sends minimal elements of SuppS(S⊗RM)
to minimal elements of SuppR(M).

Proof. Let q be a minimal element SuppS(S ⊗R M). Then its image p ∈ Spec(R)
belongs to SuppR(M) by Proposition 1.1.9. If p′ ∈ SuppR(M) is such that p′ ⊂ p,
then by Proposition 2.4.3 we may find a preimage q′ of p′ such that q′ ⊂ q. Then
q′ ∈ SuppS(S ⊗RM) by Proposition 1.1.9, hence q′ = q by minimality of q. Thus p′ = p,
proving that p is a minimal element of SuppR(M). �

Proposition 2.4.5 (Prime avoidance). Let I, p1, · · · , pn be ideals of R. Assume that
pi is prime for i ≥ 3. If I ⊂ p1 ∪ · · · ∪ pn then I ⊂ pi for some i ∈ {1, · · · , n}.

Proof. We assume that I is contained in no pi and find x ∈ I belonging to no pi.
This is clear for n = 0, 1. If n = 2, we xi ∈ I − pi for i = 1, 2. We may assume that
x1 ∈ p2 and x2 ∈ p1 (otherwise the statement is proved). Then x = x1 + x2 works.

Now assume that n > 2, and proceed by induction on n. For each j = 1, · · · , n, we
can find by induction xj ∈ I which is in none of the pi for i 6= j, and we may assume as
above that xj ∈ pj . Then x = xn + x1x2 · · ·xn−1 works, since pn is prime (n ≥ 3). �

Proposition 2.4.6. Let ϕ : A→ B be a local morphism of local rings and M a finitely
generated A-module. Let m be the maximal ideal of A, and k its residue field. Then

dimB B ⊗AM ≤ dimAM + dimB B ⊗A k,

with equality if B is flat as an A-module.

Proof. We may assume that M 6= 0, and proceed by induction on dimAM . First
assume that dimAM = 0. Then {m} = SuppA(M) = SuppA(k), hence SuppB(B⊗AM) =
SuppB(B ⊗A k) by Proposition 1.1.9 and thus dimB B ⊗AM = dimB ⊗A k, proving the
statement in this case.

Assume that dimAM > 0. Then m is not a minimal element of SuppA(M). By prime
avoidance (Proposition 2.4.5) and finiteness of the set of minimal primes (Corollary 1.3.6),
we may find x ∈ m belonging to no minimal primes of SuppA(M). By Proposition 2.3.4
we have dimAM/xM = dimAM − 1, so that we may use the induction hypothesis for
the module M/xM and obtain

(2.4.a) dimB B ⊗A (M/xM) ≤ dimAM − 1 + dimB B ⊗A k,

with equality if ϕ is flat. Applying Proposition 2.3.4 to the B-module B ⊗AM and the
element ϕ(x) ∈ B, we obtain

(2.4.b) dimB B ⊗AM ≤ dimB B ⊗A (M/xM) + 1,
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with equality if ϕ(x) belongs to no minimal primes of SuppB(B ⊗A M). The latter
condition is fulfilled if ϕ is flat by Corollary 2.4.4. The statement follows by combining
(2.4.a) and (2.4.b). �
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CHAPTER 3

Systems of parameters

1. Alternative definition of the dimension

In this section (A,m, k) is a local ring, and M a finitely generated A-module.

Lemma 3.1.1. The following conditions are equivalent:

(i) dimM = 0.
(ii) Supp(M) = {m}.

(iii) Ass(M) = {m}.
(iv) The A-module M has finite length and is nonzero.
(v) M 6= 0 and there is an integer n such that mnM = 0.

Proof. (i)⇔ (ii): Indeed, dimM is the supremum of the lengths of chains of primes
in Supp(M), and m ∈ Supp(M) as soon as Supp(M) 6= ∅.

(ii) ⇔ (iii): This follows from Proposition 1.3.1.
(iv) ⇔ (i): This was proved in Lemma 2.2.5.
(iv) ⇒ (v): The sequence of submodules mi+1M ⊂ miM ⊂ · · · must stabilise, hence

there is n such that mn+1M = mnM . By Nakayama’s Lemma 1.1.6 (applied to mnM)
we obtain mnM = 0.

(v) ⇒ (ii): If p ∈ Supp(M), then mn ⊂ Ann(M) ⊂ p. Thus for any x ∈ m we have
xn ∈ p. Since p is prime, this implies x ∈ p, proving that m = p. �

Proposition 3.1.2. Assume that M 6= 0. Then dimM is finite, and coincides with
the smallest integer n for which there exists elements x1, · · · , xn ∈ m such that the module
M/{x1, · · · , xn}M satisfies the conditions of Lemma 3.1.1.

Proof. If x1, · · · , xm ∈ m are such that dimM/{x1, · · · , xm}M = 0, then dimM ≤
m by Proposition 2.3.4.

If x1, · · · , xm is a finite set of generators of the ideal m (which exists since A is
noetherian), then the module M/{x1, · · · , xm}M = M/mM satisfies the condition (v) of
Lemma 3.1.1, hence dimM ≤ m <∞.

We prove by induction on n = dimM that we may find x1, · · · , xn ∈ m such that
dimM/{x1, · · · , xn}M = 0. The case n = 0 being clear, let us assume that n > 0.
By prime avoidance (Proposition 2.4.5), we may find an element xn ∈ m belonging to no
p ∈ Supp(M) such that dimA/p = n (by Corollary 1.3.6 there are only finitely many such
p, since they are among the minimal elements of Supp(M)). Then dimM/xnM = n− 1
by Proposition 2.3.4. Applying the induction hypothesis to the module N = M/xnM , we
find x1, · · · , xn−1 ∈ m such that N/{x1, · · · , xn−1}N = M/{x1, · · · , xn}M satisfies the
conditions of Lemma 3.1.1. �

Definition 3.1.3. A set {x1, · · · , xn} as in Proposition 3.1.2 (with n = dimM) is
called a system of parameters for M .
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If V is a k-vector space, we denote by dimk−vect V its dimension in the sense of linear
algebra (that is, the cardinality of a k-basis).

Proposition 3.1.4. The minimal number of generators of the ideal m is equal to
dimk−vect(m/m

2).

Proof. Let n = dimk−vect(m/m
2), and x1, · · · , xn ∈ m a family which reduces mod-

ulo m2 to a k-basis of m/m2. Let I ⊂ m be the ideal generated by x1, · · · , xn. Then
m = I + m2. Thus the finitely generated A-module M = m/I satisfies mM = M , hence
vanishes by Nakayama’s Lemma 1.1.6. This prove that m = I can be generated by n
elements.

Conversely if the A-module m is generated by m elements, then the k-vector space
m/m2 is generated by their images modulo m2, so that dimk−vect(m/m

2) ≤ m. �

Corollary 3.1.5. We have dimk−vect(m/m
2) ≥ dimA.

Proof. Since the A-module k = A/mA satisfies the conditions of Lemma 3.1.1, this
follows from Proposition 3.1.2 applied with M = A, and Proposition 3.1.4. �

2. Regular local rings

Definition 3.2.1. We will say that a local (noetherian) ring A is regular if dimA =
dimk−vect(m/m

2), or equivalently (Proposition 3.1.4) if m can be generated by dimA
elements. A system of parameters for A generating the maximal ideal is called a regular
system of parameters.

Example 3.2.2. A local ring of dimension zero is a regular local ring if and only if
it is a field. Indeed let m be its maximal ideal. Then dimk−vect(m/m

2) = 0 if and only if
m = m2. By Nakayama’s Lemma 1.1.6, this condition is equivalent to m = 0.

Example 3.2.3. (Exercise) A local ring of dimension one is a regular local ring if and
only if it is a discrete valuation ring.

Lemma 3.2.4. Let (A,m) be a regular local ring, and x ∈ m − m2. Then A/xA is a
regular local ring of dimension dimA− 1.

Proof. Consider the local ring B = A/xA, and let n = m/xA be its maximal ideal.
Note that k = A/m = B/n. There is a surjective morphism m/m2 → n/n2 of k-vector
spaces whose kernel contains the 1-dimensional k-vector space generated by x mod m2.
It follows that

dimk−vect(n/n
2) ≤ dimk−vect(m/m

2)− 1 = dimA− 1 ≤ dimB,

where we use Proposition 2.3.4 for the last inequality. Since dimk−vect(n/n
2) ≥ dimB by

Corollary 3.1.5, we conclude that dimk−vect(n/n
2) = dimB = dimA− 1. �

A partial converse is given by the following.

Lemma 3.2.5. Let (A,m) be a local ring, and x ∈ m a nonzerodivisor in A. If A/xA
is a regular local ring then so is A.

Proof. Let n = dimA. By Corollary 2.3.5 we have dimA/xA = n − 1. Let
x1, · · · , xn−1 be elements of m reducing modulo xA to a regular system of parameters for
the local ring A/xA. Then the n elements x, x1, · · · , xn−1 generate the ideal m, and thus
form a regular system of parameters for A. �
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Proposition 3.2.6. A regular local ring is an integral domain.

Proof. Let (A,m) be a regular local ring. We prove that A is an integral domain by
induction on dimA. If dimA = 0, then A is a field by Example 3.2.2, and in particular an
integral domain. If dimA > 0, then m 6= 0, hence m 6= m2 by Nakayama’s Lemma 1.1.6.
Thus by prime avoidance (Proposition 2.4.5) we may find an element x ∈ m not belonging
to m2 nor to any of the finitely many minimal primes of A (Corollary 1.3.6). The local
ring A/xA is regular and has dimension dimA − 1 by Lemma 3.2.4. By the induction
hypothesis it is an integral domain, which means that xA is a prime ideal of A. So xA
contains a minimal prime q; by the choice of x we have x 6∈ q. For any y ∈ q, we can write
y = xa for some a ∈ A. Since q is prime and x 6∈ q we have a ∈ q. Thus q = xq, hence
q = mq and by Nakayama’s Lemma 1.1.6 we have q = 0, proving that A is an integral
domain. �
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CHAPTER 4

Tor and Ext

In this section R is a commutative unital ring.

1. Chain complexes

Definition 4.1.1. A chain complex (of R-modules) C is a collection of R-modules
Ci and morphisms of R-modules dCi : Ci → Ci−1 for i ∈ Z satisfying dCi−1 ◦ dCi = 0. The
R-module

Hi(C) = ker dCi / im dCi+1

is called the i-th homology of the chain complex C. The chain complex C is called exact
if Hi(C) = 0 for all i.

A morphism of chain complexes f : C → C ′ is a collection of morphisms fi : Ci → C ′i
such that fi−1 ◦ di = di ◦ fi. Such a morphism induces a morphism of the homology
modules Hi(C)→ Hi(C

′). We say that the morphism C → C ′ is a quasi-isomorphism if
the induced morphism Hi(C)→ Hi(C

′) is an isomorphism for all i.

Definition 4.1.2. We say that the morphisms of chain complexes f, g : C → C ′ are
homotopic if there exists a collection of morphisms si : Ci → C ′i+1 such that

fi − gi = dC
′

i+1 ◦ si + si−1 ◦ dCi .

A morphism of chain complexes f : M → N is a homotopy equivalence if there exists
a morphism of chain complexes g : N →M such that f ◦ g is homotopic to idN and g ◦ f
is homotopic to idM . We say that the chain complexes are homotopy equivalent if there
exists a homotopy equivalence between them.

Proposition 4.1.3. Homotopic morphisms induce the same morphism in homology.

Proof. In the notations of Definition 4.1.2, the morphism dC
′

i ◦ si has image con-

tained in im dC
′

i+1 and kernel of the morphism si−1 ◦dCi contains ker dCi . These morphisms
thus induce the zero morphism in homology by construction. �

Corollary 4.1.4. Homotopy equivalent chain complexes are quasi-isomorphic.

Definition 4.1.5. A sequence of chain complexes

0→ C ′ → C → C ′′ → 0

is called exact if the sequence

0→ C ′i → Ci → C ′′i → 0

is exact for each i.
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Proposition 4.1.6. An exact sequence of chain complexes

0→ C ′ → C → C ′′ → 0

induces an exact sequence of modules

· · · → Hi+1(C ′′)→ Hi(C
′)→ Hi(C)→ Hi(C

′′)→ Hi−1(C)→ · · ·

Proof. We only describe the morphism ∂ : Hi+1(C ′′)→ Hi(C
′). Any element x′′i+1 ∈

ker dC
′′

i+1 lifts to xi+1 ∈ Ci+1. Let xi = dCi+1(xi+1) ∈ Ci. The image of xi in C ′′i is

dC
′′

i+1(x′′i+1) = 0, hence xi is the image of some x′i ∈ C ′i. In addition the image of dC
′

i (x′i) ∈
C ′i−1 in Ci−1 is dCi ◦ dCi+1(xi) = 0. Since C ′i−1 → Ci−1 is injective, it follows that

x′i ∈ ker dC
′

i . We define ∂(x) as the class of x′i ∈ Hi(C
′) = ker dC

′

i / im dC
′

i+1.
We leave it as an exercise to check that ∂ is well-defined and that the sequence is

exact. �

2. Projective Resolutions

Lemma 4.2.1. Let M be a module. Then there exists a surjective morphism F →M
with F free. If M finitely generated, then F may be chosen to be finitely generated.

Proof. First assume that G ⊂M is a generating set for the R-module M , and let F
be the free module on the basis {eg|g ∈ G}. Then there is a surjective morphism F →M
given by eg 7→ g.

We may always take G = M . If M is finitely generated, we may find a finite generating
set G; in this case F is finitely generated. �

Definition 4.2.2. An R-module P is projective if for every surjective R-module
morphism M →M ′′, the natural morphism HomR(P,M)→ HomR(P,M ′′) is surjective.

Lemma 4.2.3. A module is projective if and only if it is a direct summand of a free
module.

Proof. If P is a projective R-module, we may find a surjective R-module morphism
p : F → P with F free by Lemma 4.2.1. Since P is projective, there is an R-module
morphism s : P → F such that p ◦ s = idP . This gives a decomposition F = P ⊕ ker p.

Let L be a free module with basis lα, and M → M ′′ be a surjective morphism. Let
g : L→M ′′ be a morphism. For each α, choose an element of mα ∈M mapping to g(lα).
Then the unique morphism L→M mapping lα to mα is a lifting of g. This proves that L
is projective. Let now A be a direct summand of a free module L, which means that there
are morphisms A → L and L → A such that the composite A → L → A is the identity.
Let A → M be a morphism. As we have just seen, the morphism L → A → M lifts to
a morphism L → M ′′. The composite A → L → M is then a lifting of the morphism
A→M . This proves that the module A is projective. �

Lemma 4.2.4. A projective module is flat.

Proof. Using the fact that tensor products commutes with (possibly infinite) direct
sums, we see that a direct summand of a flat module is flat, and that a free module is
flat. The lemma then follows from Lemma 4.2.3. �
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Definition 4.2.5. Let M be an R-module. A resolution C →M is a chain complex
C such that Ci = 0 for i < 0, together with a morphism C0 →M such that the augmented
chain complex

· · · → C1 → C0 →M → 0

is exact.
This may be reformulated as follows. We denote by C(M) the chain complex such

that C(M)i = 0 for i 6= 0 and C(M)0 = M (and thus d
C(M)
i = 0 for all i). A resolution

of M is a chain complex C such that Ci = 0 for i < 0, together with a quasi-isomorphism
C → C(M).

A resolution C → M is said to be projective, resp. free, resp. finitely generated, if
each Ci is so.

Proposition 4.2.6. Every module admits a free resolution. If R is noetherian, any
finitely generated R-module admits a finitely generated free resolution.

Proof. Let M be a module. We construct a chain complex D as follows. We let
Di = 0 for i < 0 and D−1 = M . Assuming that Di−1 → Di−2 → · · · is constructed for
some i ≥ 0, by Lemma 4.2.1 we may find a surjection Di → ker(Di−1 → Di−2) with Di

free (resp. free and finitely generated). Then the sequence of modules Di → Di−1 → Di−2
is exact. The resolution C →M is obtained by letting Ci = Di for i 6= 0 and C0 = 0. �

Proposition 4.2.7. Let E and P be two chain complexes. Assume that

• Pi = Ei = 0 for i < −1.
• Pi is projective for i ≥ 0.
• E is exact.

Let g : P−1 → E−1 be a morphism of modules. Then there is a morphism of chain
complexes f : P → E such that f−1 = g. This morphism is unique up to homotopy.

Proof. We construct fi inductively, starting with f−1 = g. Assume that i ≥ 0 and
that fi−1 is constructed. The composite fi−1◦dPi : Pi → Ei−1 lands into ker dEi−1, because

dEi−1 ◦ fi−1 ◦ dPi = fi−2 ◦ dPi−1 ◦ dPi = 0.

By exactness of the complex E, the morphism Ei → ker dEi−1 induced by dEi is surjective,

hence by projectivity of Pi, we may find a morphism fi : Pi → Ei such that dEi ◦ fi =
fi−1 ◦ dPi .

Now let f, f ′ : P → E be morphisms of chain complexes extending g. We construct
for each i a morphism si : Pi → Ei+1 such that

fi − f ′i = dEi+1 ◦ si + si−1 ◦ dPi
by induction on i. We let si = 0 for i < −1. Assume that si−1 is constructed. Then

dEi ◦ (fi − f ′i) = (fi−1 − f ′i−1) ◦ dPi
= dEi ◦ si−1 ◦ dPi + si−2 ◦ dPi−1 ◦ dPi
= dEi ◦ si−1 ◦ dPi ,

so that (fi−f ′i)−si−1 ◦dPi : Pi → Ei has image in ker dEi . By exactness of the complex E,
the morphism Ei+1 → ker dEi is surjective. By projectivity of Pi, we obtain a morphism
si : Pi → Ei+1 such that dEi+1 ◦ si = (fi − f ′i)− si−1 ◦ dPi , as required. �
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Corollary 4.2.8. Let M be an R-module, and P → M,P ′ → M projective resolu-
tions. Then there exists a morphism of chain complexes P → P ′ such that the composites
P0 → P ′0 → M and P0 → M coincide. Such a morphism is unique up to homotopy, and
is a homotopy equivalence.

Proof. By Proposition 4.2.7, the identity of M extends to morphisms of chain
complexes P → P ′ and P ′ → P , which are unique up to homotopy. The composite
P → P ′ → P and the identity of P are both extensions of the identity of M . They
must be homotopic by the unicity part of Proposition 4.2.7. For the same reason, the
composite P ′ → P → P ′ is homotopic to the identity of P ′. �

Lemma 4.2.9. Let C ′ and C ′′ be chain complexes. Assume that

• C ′i = C ′′i = 0 for i < −1
• C ′′i is projective for i ≥ 0.
• C ′ is exact.

Then any exact sequence of modules

0→ C ′−1 →M → C ′′−1 → 0

is the degree −1 part of an exact sequence of chain complexes

0→ C ′ → C → C ′′ → 0.

In addition:

(i) If the chain complex C ′′ is exact, then so is C.
(ii) For each i ≥ 0, the exact sequence of modules

0→ C ′i → Ci → C ′′i → 0

splits (i.e. induces a decomposition Ci = C ′i ⊕ C ′′i ).
(iii) If C ′i is projective, then so is Ci.

Proof. Let us first prove (i) (ii) (iii) assume the first part of lemma.
(i): This follows from the homology long exact sequence Proposition 4.1.6.
(ii): This follows from the fact that C ′′i is projective.
(iii): This follows from (ii), since a direct sum of projective modules is projective (e.g.

by Lemma 4.2.3).
Let us now prove the first part of the lemma. We let Ci = C ′i ⊕ C ′′i with the natural

morphisms C ′i → Ci → C ′′i . We construct by induction a morphism dCi : Ci → Ci−1 such
that dCi−1 ◦ dCi = 0 making the following diagram commute

C ′i
//

��

Ci //

��

C ′′i

��
C ′i−1

// Ci−1 // C ′′i−1

and moreover such that the sequence

0→ Z ′i → Zi → Z ′′i → 0

is exact, where Zi = ker dCi , Z ′i = ker dC
′

i , Z ′′i = ker dC
′′

i .
We let dC−1 = 0. Assume dCi−1 constructed for some i ≥ 0. The morphism dCi : Ci →

Zi−1 ⊂ Ci−1 is the sum of the morphism C ′i → Z ′i−1 → Zi−1 and a morphism C ′′i → Zi−1
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lifting the morphism C ′′i → Z ′′i−1, which exists since C ′′i is projective and Zi−1 → Z ′′i−1 is
surjective.

It only remains to prove that Zi → Z ′′i is surjective. Any x′′i ∈ Z ′′i ⊂ C ′′i lifts to
an element xi ∈ Ci. Let xi−1 = dCi (xi) ∈ Ci−1. Then the image of xi−1 in C ′′i−1 is

dC
′′

i (x′′i ) = 0, hence xi−1 is the image of some element of x′i−1 ∈ C ′i−1. In addition, the

image of dC
′

i−1(x′i−1) in C ′′i−2 is dCi−1(xi−1) = dCi−1 ◦ dCi (xi) = 0, hence dC
′

i−1(x′i−1) = 0 by
injectivity of C ′i−2 → Ci−2. Since the complex C ′ is exact, we may find x′i ∈ C ′i such that

dC
′

i (x′i) = x′i−1. Let yi ∈ Ci be the image of x′i. Then xi− yi ∈ Ci maps to x′′i in C ′′i , and
satisfies di(xi − yi) = 0, i.e. belongs to Zi. �

3. The Tor functor

When C is a chain complex, and N a module, we denote by C⊗RN the chain complex
such that that (C ⊗R N)i = Ci ⊗R N and dC⊗RN

i = dCi ⊗ idN . A morphism of chain
complexes f : C → C ′ induces a morphism of chain complexes f⊗RN : C⊗RN → C ′⊗RN .
If f is homotopic to g, then f⊗RN is homotopic to g⊗RN . Thus a homotopy equivalence
C → C ′ induces a homotopy equivalence C ⊗R N → C ′ ⊗R N , and in particular a quasi-
isomorphism by Corollary 4.1.4.

Definition 4.3.1. Let M,N be two modules and n an integer. Let C → M be
a projective resolution. Then the module Hn(C ⊗R N) is independent of the choice
of C, up to a canonical isomorphism by the discussion above and Corollary 4.2.8. We
denote this module by Torn(M,N), or TorRn (M,N). A morphism g : N → N ′ induces
a morphism Torn(M, g) : Torn(M,N) → Torn(M,N ′). Let now M ′ be another module,
and C ′ →M ′ be a projective resolution. By Proposition 4.2.7 any morphism of modules
f : M →M ′ extends to a morphism of complexes C → C ′. The latter induces a morphism
Torn(f,N) : Torn(M,N) → Torn(M ′, N) which does not depend on any choice by the
unicity part of Proposition 4.2.7 and Proposition 4.1.3.

Proposition 4.3.2. (i) Tor0(M,N) 'M ⊗R N .
(ii) Torn(M,N) = 0 for n < 0.

(iii) If N is flat, then Torn(M,N) = 0 for n > 0.
(iv) If M is projective, then Torn(M,N) = 0 for n > 0.
(v) If f, g : M →M ′ are two morphisms and λ ∈ R, then

Torn(f + λg,N) = Torn(f,N) + λTorn(g,N).

(vi) If a, b : N → N ′ are two morphisms and µ ∈ R, then

Torn(M,a+ µb) = Torn(M,a) + µTorn(M, b).

Proof. If C →M is a projective resolution of M , then M = coker(C1 → C0), hence
by right-exactness of the tensor product, we have

M ⊗R N = coker(C1 ⊗R N → C0 ⊗R N) = H0(C ⊗R N).

This proves (i). Since Cn = 0 for n < 0, we have Cn⊗RN = 0, and thus Hn(C⊗RN) = 0,
proving (ii). If N is flat, then C⊗RN →M ⊗RN is a resolution, hence Hn(C⊗RN) = 0
for n > 0. This proves (iii).

Now if M is projective, we may use the trivial projective resolution C(M) → M
(see Definition 4.2.5) to compute Torn(M,N), so that Torn(M,N) = 0 for n > 0. This
proves (iv). The two remaining statements follow easily from the construction of the Tor
functor. �
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Proposition 4.3.3. Consider an exact sequence of modules

0→M ′ →M →M ′′ → 0

Let N be a module. Then we have an exact sequence

· · · → Torn+1(M ′′, N)→ Torn(M ′, N)→ Torn(M,N)→ Torn(M ′′, N)→ · · ·

Proof. Let C ′ →M ′ and C ′′ →M ′′ be projective resolutions. By Lemma 4.2.9, we
find a projective resolution C →M and an exact sequence of chain complexes 0→ C ′ →
C → C ′′ → 0 extending the exact sequence of modules 0→M ′ →M →M ′′ → 0. Since
each exact sequence 0 → C ′i → Ci → C ′′i → 0 is split, the sequence of chain complexes
0 → C ′ ⊗R N → C ⊗R N → C ′′ ⊗R N → 0 is exact. The corresponding long exact
sequence (Proposition 4.1.6) is the required sequence. �

Proposition 4.3.4. Consider an exact sequence of modules

0→ N ′ → N → N ′′ → 0

Let M be a module. Then we have an exact sequence

· · · → Torn+1(M,N ′′)→ Torn(M,N ′)→ Torn(M,N)→ Torn(M,N ′′)→ · · ·

Proof. Let C → M be a projective resolution. Since each Ci is projective, hence
flat by Lemma 4.2.4, we have an exact sequence of complexes

0→ C ⊗R N ′ → C ⊗R N → C ⊗R N ′′ → 0.

The corresponding long exact sequence (Proposition 4.1.6) is the required sequence. �

Proposition 4.3.5. The modules Torn(N,M) and Torn(M,N) are isomorphic.

Proof. We proceed by induction on n, the case n = 0 being the symmetry of the
tensor product. Let 0→ K → P → N → 0 be an exact sequence with P projective (this
is possible by Lemma 4.2.1). Since P is both projective and flat (Lemma 4.2.4), so that
Torn(P,M) = Tor(P,M) = 0 for n > 0 by Proposition 4.3.2.

Applying Proposition 4.3.3 and Proposition 4.3.4, we obtain a commutative diagram
with exact rows (recall that Tor1(P,M) = Tor1(M,P ) = 0)

0 // Tor1(M,N) // M ⊗R K //

��

M ⊗R P

��
0 // Tor1(N,M) // K ⊗RM // P ⊗RM

Since horizontal arrows are isomorphisms, we conclude that Tor1(M,N) ' Tor1(N,M).
Let now n > 1. Using Proposition 4.3.3 and the vanishing of Torn(M,P ) and

Torn−1(M,P ) we deduce that Torn(M,N) ' Torn−1(M,K). Using Proposition 4.3.4
and the vanishing of Torn(P,M) and Torn−1(P,M) we deduce that Torn(N,M) '
Torn−1(K,M). By induction Torn−1(M,K) ' Torn−1(K,M), and the result follows. �
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4. Cochain complexes

Definition 4.4.1. A cochain complex (of R-modules) C is a collection of R-modules
Ci and morphisms of R-modules diC : Ci → Ci+1 for i ∈ Z satisfying di+1

C ◦ diC = 0. The
R-module

Hi(C) = ker diC/ im di−1C

is called the i-th cohomology of the cochain complex C. A morphism of cochain complexes
f : C → C ′ is a collection of morphisms f i : Ci → C ′i such that f i+1 ◦di = di ◦f i. Such a
morphism induces a morphism of the cohomology modules Hi(C)→ Hi(C ′). We say that
the morphism C → C ′ is a quasi-isomorphism if the induced morphism Hi(C)→ Hi(C ′)
is an isomorphism for all i.

Definition 4.4.2. We say that the morphisms of cochain complexes f, g : C → C ′

are homotopic if there exists a collection of morphisms si : Ci → C ′i−1 such that

f i − gi = di−1C′ ◦ s
i + si+1 ◦ diC .

A morphism of cochain complexes f : M → N is a homotopy equivalence if there
exists a morphism of cochain complexes g : N → M such that f ◦ g is homotopic to idN
and g ◦ f is homotopic to idM .

Proposition 4.4.3. Homotopic morphisms induce the same morphism in cohomol-
ogy.

Proof. In the notations of the definition, the morphism di−1C′ ◦si has image contained

in im dC
′

i−1 and kernel of the morphism si+1 ◦diC contains ker diC . These morphisms induce
the zero morphism in cohomology by construction. �

Corollary 4.4.4. Homotopy equivalent cochain complexes are quasi-isomorphic.

Definition 4.4.5. A sequence of cochain complexes

0→ C ′ → C → C ′′ → 0

is called exact if the sequence

0→ C ′i → Ci → C ′′i → 0

is exact for each i.

Proposition 4.4.6. An exact sequence of cochain complexes

0→ C ′ → C → C ′′ → 0

induces an exact sequence of modules

· · · → Hi−1(C ′′)→ Hi(C ′)→ Hi(C)→ Hi(C ′′)→ Hi+1(C)→ · · ·

5. The Ext functor

When M,N are two R-modules, we denote by HomR(M,N) the R-module of R-
module morphisms M → N . When C is a chain complex and N a module, we denote by
HomR(C,N) the cochain complex such that (HomR(C,N))i = HomR(Ci, N) and

diHomR(C,N) : HomR(Ci, N)→ HomR(Ci+1, N)

is the morphism induced by left-composition with dCi+1.
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Definition 4.5.1. Let M,N be two modules and n an integer. Let C →M be a pro-
jective resolution. Then the module Hn(HomR(C,N)) is independent of the choice of C,
up to a canonical isomorphism. We denote this module by Extn(M,N), or ExtnR(M,N).
A morphism g : N → N ′ induces a morphism Extn(M, g) : Extn(M,N)→ Extn(M,N ′).
A morphism f : M →M ′ induces a morphism Extn(f,N) : Extn(M ′, N)→ Extn(M,N).

Proposition 4.5.2. (i) Ext0(M,N) ' HomR(M,N).
(ii) Extn(M,N) = 0 for n < 0.

(iii) If M is projective, then Extn(M,N) = 0 for n > 0.
(iv) If f, g : M →M ′ are two morphisms and λ ∈ R, then

Extn(f + λg,N) = Extn(f,N) + λExtn(g,N).

(v) If a, b : N → N ′ are two morphisms and µ ∈ R, then

Extn(M,a+ µb) = Extn(M,a) + µExtn(M, b).

Proof. If C → M is a (projective) resolution of M , then M = coker(C1 → C0),
hence by left-exactness of the contravariant functor HomR(−, N), we have

HomR(M,N) = ker(HomR(C0, N)→ HomR(C1, N)) = H0(HomR(C,N)).

This proves the first statement. Since Cn = 0 for n < 0, we have HomR(Cn, N) = 0, and
thus Hn(HomR(C,N)) = 0, proving the second statement. Now if M is projective, we
may use the trivial projective resolution C(M) → M (see Definition 4.2.5) to compute
Extn(M,N), so that Extn(M,N) = 0 for n > 0. This proves the third statement. The
two remaining statements follow easily from the construction of the Ext functor. �

Proposition 4.5.3. Consider an exact sequence of modules

0→M ′ →M →M ′′ → 0

Let N be a module. Then we have an exact sequence

· · · → Extn−1(M ′, N)→ Extn(M ′′, N)→ Extn(M,N)→ Extn(M ′, N)→ · · ·

Proof. Let C ′ →M ′ and C ′′ →M ′′ be projective resolutions. By Lemma 4.2.9, we
find a projective resolution C →M and an exact sequence of chain complexes 0→ C ′ →
C → C ′′ → 0 extending the exact sequence of modules 0→M ′ →M →M ′′ → 0. Since
each exact sequence 0→ C ′i → Ci → C ′′i → 0 is split, the sequence of cochain complexes
0 → HomR(C ′′, N) → HomR(C,N) → HomR(C ′, N) → 0 is exact. The corresponding
long exact sequence (Proposition 4.4.6) is the required sequence. �

Proposition 4.5.4. Consider an exact sequence of modules

0→ N ′ → N → N ′′ → 0

Let M be a module. Then we have an exact sequence

· · · → Extn−1(M,N ′′)→ Extn(M,N ′)→ Extn(M,N)→ Extn(M,N ′′)→ · · ·

Proof. Let C →M be a projective resolution. Since each Ci is projective, we have
an exact sequence of cochain complexes

0→ HomR(C,N ′)→ HomR(C,N)→ HomR(C,N ′′)→ 0.

The corresponding long exact sequence (Proposition 4.4.6) is the required sequence. �
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CHAPTER 5

Depth

In this chapter (A,m) is a noetherian local ring, and M a finitely generated A-module.

1. M-regular sequences

Definition 5.1.1. A finite tuple (x1, · · · , xn) of elements of m is called an M -regular
sequence if for all i the element xi is a nonzerodivisor in M/{x1, · · · , xi}M . The integer
n is the length of the M -regular sequence. The M -regular sequence is called maximal if
there is no xn+1 ∈ m such that (x1, · · · , xn+1) is an M -regular sequence.

Lemma 5.1.2. If M 6= 0, then a maximal M -regular sequence exists.

Proof. If not, we may find xi ∈ m for i ∈ N such that (x1, · · · , xn) is an M -regular
sequence for all n. By Nakayama’s Lemma 1.1.6, the A-module M/{x1, · · · , xn−1}M is
nonzero, hence we may find an element m ∈M such that m 6∈ {x1, · · · , xn−1}M . Assume
that xn ∈ {x1, · · · , xn−1}A. Then xnm ∈ {x1, · · · , xn−1}M , hence xn is a zerodivisor in
M/{x1, · · · , xn−1}M , a contradiction. It follows that the sequence of ideals

· · · ⊂ {x1, · · · , xn}A ⊂ {x1, · · · , xn+1}A ⊂ · · ·

of A is strictly increasing, which is impossible since A is noetherian. �

Definition 5.1.3. A finite subset S of m is called secant for M if

dimM/SM = dimM − s,

where s is the cardinal of S. We will say that a sequence (s1, · · · , sn) is secant for M if
the set {s1, · · · , sn} is secant for M .

Proposition 5.1.4. Any M -regular sequence is secant.

Proof. By induction it is enough to consider the case of a sequence of length 1, in
which case the statement is Corollary 2.3.5. �

2. Depth

Definition 5.2.1. The depth of M is defined as

depthM = depthAM = inf{i ∈ N | Exti(k,M) 6= 0}.

This is an element of N ∪ {∞}. When M = 0, we have depthM =∞.

Proposition 5.2.2. Let x ∈ m be a nonzerodivisor in M . Then

depthM/xM = depthM − 1.
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Proof. From the exact sequence 0 → M
x−→ M → M/xM → 0 we deduce using

Proposition 4.5.4 an exact sequence

· · · → Exti−1(k,M/xM)→ Exti(k,M)
x−→ Exti(k,M)→ · · ·

In view of Proposition 4.5.2 (iv), the A-module Exti(k,M) is annihilated by Ann(k) = m,
and in particular multiplication by x is zero in this module. We obtain for each i an exact
sequence

0→ Exti−1(k,M)→ Exti−1(k,M/xM)→ Exti(k,M)→ 0.

Therefore Exti−1(k,M/xM) 6= 0 if and only if Exti−1(k,M) 6= 0 or Exti(k,M) 6= 0. The
result follows. �

Corollary 5.2.3. Let (x1, · · · , xn) be an M -regular sequence. Then

depth(M/{x1, · · · , xn}M) = depthM − n,
and in particular depthM ≥ n.

Lemma 5.2.4. The following conditions are equivalent:

(i) depthM = 0.
(ii) Every element of m is a zerodivisor in M .

(iii) m ∈ Ass(M).

Proof. A nonzero A-linear morphism k → M is necessarily injective, therefore
Ext0(k,M) = HomA(k,M) is nonzero if and only if there is an injective A-modules
morphism k →M . This proves that (i) ⇔ (iii).

By Lemma 1.2.9, the set of nonzerodivisors in M is the union of the associated
primes of M . Since Ass(M) is finite (Corollary 1.3.6), we see using prime avoidance
(Proposition 2.4.5) that (ii) ⇔ (iii). �

Lemma 5.2.5. Let (x1, · · · , xn) be an M -regular sequence. The following conditions
are equivalent:

(i) depthM = n.
(ii) The M -regular sequence (x1, · · · , xn) is maximal.

(iii) m ∈ Ass(M/{x1, · · · , xn}M).

Proof. In view of Corollary 5.2.3, we see that (i) is equivalent to the condition
depth(M/{x1, · · · , xn}M) = 0. On the other hand (ii) means that every element of m is
a zerodivisor in M/{x1, · · · , xn}M . So the lemma is just a reformulation of Lemma 5.2.4.

�

Proposition 5.2.6. Assume that M 6= 0. Then depthM is finite, and coincides with
the length of any maximal M -regular sequence.

Proof. If (x1, · · · , xn) is a maximal M -regular sequence, then depthM = n by
Lemma 5.2.5. Such a sequence always exists by Lemma 5.1.2. �

Combining Proposition 5.2.6 and Proposition 5.1.4, we obtain:

Corollary 5.2.7. If M 6= 0, then depthM ≤ dimM .

We can be more precise:

Proposition 5.2.8. We have depthM ≤ dimA/p for every p ∈ Ass(M).
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Proof. We may assume that M 6= 0 and proceed by induction on depthM (which
is finite by Proposition 5.2.6), the case depthM = 0 being clear. If depthM > 0, then
by Lemma 5.2.4 we can find x ∈ m, which a nonzerodivisor in M . Let p ∈ Ass(M), and
consider the exact sequence of A-modules

0→ HomA(A/p,M)
x−→ HomA(A/p,M)→ HomA(A/p,M/xM).

Since p ∈ Ass(M), the A-module HomA(A/p,M) is nonzero. It is also finitely gener-
ated, being a submodule of HomA(A,M) = M . By Nakayama’s Lemma 1.1.6, it fol-
lows that HomA(A/p,M)/xHomA(A/p,M) 6= 0, hence by the above exact sequence
HomA(A/p,M/xM) 6= 0. Thus the A-module M/xM contains a nonzero quotient Q of
A/p. Let us choose an element q ∈ Ass(Q) ⊂ Ass(M/xM) (Corollary 1.2.3). Then
q ∈ Supp(Q) ⊂ Supp(A/p) (because Q is a quotient of A/p), hence p ⊂ q. Since
x ∈ Ann(M/xM) ⊂ Ann(Q) ⊂ q and x 6∈ p (a nonzerodivisor is in no associated prime),
we have p ( q. Thus

dimA/p ≥ dimA/q + 1.

By Corollary 5.2.3 we have

depthM/xM = depthM − 1,

hence applying the induction hypothesis to the module M/xM , we know that

dimA/q ≥ depthM/xM.

This concludes the proof. �

Proposition 5.2.8 may be viewed as a special case of:

Proposition 5.2.9. For any p ∈ Spec(R), we have

depthAM ≤ depthAp
Mp + dimA/p.

Proof. We may assume that M 6= 0, and proceed by induction on depthM (which
is finite by Proposition 5.2.6), the case depthM = 0 being clear. If p ⊂ q for some
q ∈ Ass(M), then by Proposition 5.2.8 we have

depthAM ≤ dimA/q ≤ dimA/p ≤ depthAp
Mp + dimA/p.

Thus we may assume that p is contained in no associated prime of M . Then by prime
avoidance (Proposition 2.4.5), finiteness of Ass(M) (Corollary 1.3.6) and Lemma 1.2.9,
we may find an element x ∈ p which is a nonzerodivisor in M . The image of x in Ap

is a nonzerodivisor in Mp by flatness of A→ Ap (since multiplication with x induces an
injective endomorphism of M , multiplication with 1 ⊗ x ∈ Ap ⊗A A = Ap induces an
injective endomorphism of Ap ⊗AM = Mp). Therefore by Proposition 5.2.2

depthAM/xM = depthAM − 1 and depthAp
(M/xM)p = depthAp

Mp − 1,

and we may conclude by applying the induction hypothesis to M/xM . �

The following observation will be used later:

Lemma 5.2.10. Let M,M ′ be two finitely generated A-modules. Then

depth(M ⊕M ′) = min(depthM,depthM ′).

In particular we have depthF = depthA for any free finitely generated nonzero A-module
F .
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Proof. Let k be the residue field. Functoriality of Extn implies that Extn(k,M ⊕
M ′) = Extn(k,M)⊕ Extn(k,M ′) (exercise), and the statement follows. �

3. Depth and base change

Proposition 5.3.1. Let φ : (A,m) → (B, n) be a local morphism. Let M be a B-
module, finitely generated as an A-module. Then

depthAM = depthBM.

Proof. The statement being true if M = 0, let us assume that M 6= 0. Let
(a1, · · · , an) be a maximal M -regular sequence, where M is viewed as an A-module,
so that depthAM = n by Proposition 5.2.6. Then the tuple (φ(a1), · · · , φ(an)) is an M -
regular sequence, where M is viewed as a B-module. By Corollary 5.2.3, we may replace
M with M/{a1, · · · , an}M , and thus assume that depthAM = 0. By Lemma 5.2.4, there
is an element m ∈ M such that AnnA(m) = m. Let N be the B-submodule of M gen-
erated by m. This is a nonzero, finitely generated A-module, which is annihilated by m.
Hence N has finite length as an A-module (Lemma 3.1.1), and a fortiori as a B-module.
Thus n ∈ AssB(N) ⊂ AssB(M), showing that depthBM = 0. �

We will need the following technical lemma:

Lemma 5.3.2. Consider an exact sequence of finitely-generated A-modules

0→M ′ →M →M ′′ → 0.

If depthM ′′ ≥ depthM ′, we have depthM = depthM ′.

Proof (Exercise). Let n = depthM and n′ = depthM ′. We have an exact se-
quence (Proposition 4.5.4)

Extn
′−1(k,M ′′)→ Extn

′
(k,M ′)→ Extn

′
(k,M).

By assumption, the group on the left is zero, and the group in the middle is nonzero.
Thus the group on the right must be nonzero, showing that n ≤ n′.

We have an exact sequence (Proposition 4.5.4)

Extn(k,M ′)→ Extn(k,M)→ Extn(k,M ′′).

If n < n′, then the group on the left is zero. So is the group on the right by our assumption.
It follows that the group in the middle vanishes, a contradiction. �

Proposition 5.3.3. Let A→ B be a flat local morphism and M a finitely generated
A-module. Let m be the maximal ideal of A, and k its residue field. Then

depthB B ⊗AM = depthAM + depthB B ⊗A k.
Proof. We may assume that M 6= 0, and proceed by induction on dimAM . Assume

that dimAM = 0. Thus depthAM = 0, and we need to prove that depthB B ⊗A M =
depthB B ⊗A k. We argue by induction on lengthAM (which is finite by Lemma 2.2.5).
If lengthAM = 1, then the A-module M is isomorphic to k, and the statement is true. If
lengthAM > 1, then we can find an exact sequence of A-modules

0→ N →M → k → 0

with lengthAN < lengthAM . Since the A-module B is flat, this gives an exact sequence
of B-modules

0→ B ⊗A N → B ⊗AM → B ⊗A k → 0.
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In view of Lemma 5.3.2, the statement follows by using the induction hypothesis for the
module N .

Assume now that dimAM > 0. Let us first assume additionally that m 6∈ AssA(M).
Then we may find an element x ∈ m which is a nonzerodivisor in M (by Lemma 5.2.4). Its
image in B is a nonzerodivisor in B⊗AM by flatness of A→ B. Thus by Proposition 5.2.2
we have depthAM/xM = depthAM−1 and depthB B⊗A(M/xM) = depthB B⊗AM−1.
We may then conclude using the induction hypothesis for the A-module M/xM , whose
dimension is < dimAM by Corollary 2.3.5.

Thus we may assume that m ∈ AssA(M). Thus depthAM = 0, and we need to
prove that depthB B⊗AM = depthB B⊗A k. By Proposition 1.2.7, we can find an exact
sequence of A-modules

0→M ′ →M →M ′′ → 0

such that AssA(M ′) = {m}, and AssA(M ′′) = AssA(M)−{m}. Then dimAM
′′ = dimAM

and m 6∈ AssA(M ′′); we have just proved that

depthB B ⊗AM ′′ = depthAM
′′ + depthB B ⊗A k.

On the other hand, since dimAM
′ = 0, we have also proved that

depthB B ⊗AM ′ = depthB B ⊗A k.
By flatness of A→ B, we have an exact sequence of B-modules

0→ B ⊗AM ′ → B ⊗AM → B ⊗AM ′′ → 0,

and the statement follows from Lemma 5.3.2. �
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CHAPTER 6

Cohen-Macaulay modules

1. Cohen-Macaulay modules

In this section (A,m) will be a local ring, and M a finitely generated A-module.

Definition 6.1.1. We say that M is Cohen-Macaulay if depthM ≥ dimM . By
Corollary 5.2.7, the module M is Cohen-Macaulay if and only if M = 0 or depthM =
dimM .

Example 6.1.2. Any module of dimension zero is Cohen-Macaulay.

Proposition 6.1.3. Assume that M 6= 0. The following conditions are equivalent:

(i) M is Cohen-Macaulay,
(ii) There is an M -regular sequence which is also a system of parameters for M .

(iii) Every maximal M -regular sequence is a system of parameters for M .

Proof. (iii) ⇒ (ii): Lemma 5.1.2.
(ii) ⇒ (i): Assume that there is an M -regular sequence of length n which is a system

of parameters. Then dimM = n by Proposition 3.1.2, and n ≤ depthM by Lemma 5.2.5.
It follows that dimM ≥ depthM .

(i) ⇒ (iii): Let (x1, · · · , xn) be a maximal M -regular sequence. Then n = depthM
by Proposition 5.2.6, hence n = dimM by (i). It follows from Proposition 5.1.4 that
dimM/{x1, · · · , xn}M = 0, proving that the set {x1, · · · , xn} is a system of parameters
for M . �

Proposition 6.1.4. Assume that M is Cohen-Macaulay. Then dimA/p = dimM
for every p ∈ Ass(M).

Proof. Let p ∈ Ass(M). We have by Proposition 5.2.8 and Proposition 2.1.4

depthM ≤ dimA/p ≤ dimM.

If M is Cohen-Macaulay, these inequalities must be equalities. �

Corollary 6.1.5. Assume that M is Cohen-Macaulay. Then M is equidimensional
(dimA/p = dimM for every minimal prime p of Supp(M)), and has no embedded prime
(every element of Ass(M) is minimal in Supp(M)).

Lemma 6.1.6. Let (x1, · · · , xn) be an M -regular sequence. Then M/{x1, · · · , xn}M
is Cohen-Macaulay if and only if M is so.

Proof. We have by Corollary 5.2.3

depthM/{x1, · · · , xn}M = depthM − n,
and by Proposition 5.1.4

dimM/{x1, · · · , xn}M = dimM − n. �
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Proposition 6.1.7. The following conditions are equivalent:

(i) M is Cohen-Macaulay.
(ii) A sequence is secant for M if and only if it is M -regular.

Proof. (i) ⇒ (ii): We proceed by induction on the length of the sequence, the
case of the empty sequence being clear. Let (x1, · · · , xn) be a secant sequence. Then
dimM/x1M = dimM − 1, hence x1 belongs to no p ∈ Supp(M) such that dimA/p =
dimM by Proposition 2.3.4, hence to no associated prime of M by Proposition 6.1.4.
Thus x1 is a nonzerodivisor in M (Lemma 1.2.9), and M/x1M is Cohen-Macaulay by
Lemma 6.1.6. By induction, the sequence (x2, · · · , xn) is M/x1M -regular, hence the
sequence (x1, · · · , xn) is M -regular.

(ii) ⇒ (i): Let n = dimM and {x1, · · · , xn} a system of parameters for M . Then
the sequence (x1, · · · , xn) is M -regular by (ii), hence n ≤ depthM by Corollary 5.2.3,
proving that M is Cohen-Macaulay. �

Theorem 6.1.8 (Unmixedness theorem). The following conditions are equivalent:

(i) M is Cohen-Macaulay.
(ii) For every secant set S for M , the A-module M/SM has no embedded prime.

Proof. Assume that M is Cohen-Macaulay, and let S = {s1, · · · , sn} be a secant
set. Then (s1, · · · , sn) is an M -regular sequence by Proposition 6.1.7, hence M/SM is
Cohen-Macaulay by Lemma 6.1.6, and has no embedded prime by Corollary 6.1.5.

Conversely assume that for every secant subset S of A, the A-module M/SM has no
embedded prime. We proceed by induction on dimM , the cases M = 0 and dimM = 0
being trivial. We thus assume that dimM > 0. Taking S = ∅, we see that M has no
embedded prime. The prime m is not a minimal element of Supp(M) (because dimM >
0), and therefore m 6∈ Ass(M). Thus by Lemma 5.2.4, we can find an element x ∈ m which
is a nonzerodivisor in M . Then dimM/xM < dimM by Corollary 2.3.5. If S is a secant
subset for M/xM , then {x} ∪ S is a secant subset for M ; it follows that the A-module
M/xM satisfies the condition of the theorem. By induction it is Cohen-Macaulay, hence
M is Cohen-Macaulay by Lemma 6.1.6. �

Lemma 6.1.9. Let A → B be a local morphism. Let M be a B-module, finitely
generated as an A-module. Then M is Cohen-Macaulay as an A-module if and only if it
is so as a B-module.

Proof. This follows from Proposition 5.3.1 and Proposition 2.1.3. �

Proposition 6.1.10. Let A → B be a local morphism, and M a nonzero finitely
generated A-module. Let k be the residue field of A. Assume that B is flat over A.

Then the B-module B ⊗AM is Cohen-Macaulay if and only if the A-module M and
the B-module B ⊗A k are Cohen-Macaulay.

Proof. This follows from Proposition 2.4.6, Proposition 5.3.3 and Corollary 5.2.7.
�

2. Cohen-Macaulay rings

Lemma 6.2.1. Let R be a ring, and M an R-module. For any p ∈ Spec(R) we have

dimRM ≥ dimRp
Mp + dimR/p.
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Proof. We may assume that p ∈ Supp(M). A chain of primes of R/p corresponds
to a chain of primes of R containing in p, and thus in Supp(M). A chain of primes in
SuppRp

(Mp) corresponds to a chain of primes in Supp(M) contained in p. The concate-

nation of the two chains gives a chain in Supp(M), whose length is the sum of the two
lengths. �

Proposition 6.2.2. Let A be a local ring and M a Cohen-Macaulay A-module. Then:

(i) For every p ∈ Spec(A), the Ap-module Mp is Cohen-Macaulay.
(ii) For every p ∈ Supp(M), we have

dimAM = dimAp
Mp + dimA/p.

Proof. If p 6∈ Supp(M), then Mp = 0 is a Cohen-Macaulay Ap-module. Assume
that p ∈ Supp(M). By Proposition 5.2.9 and Lemma 6.2.1, we have

depthAp
Mp + dimA/p ≥ depthAM = dimAM ≥ dimAp

Mp + dimA/p.

Since depthAp
Mp ≤ dimAp

Mp by Corollary 5.2.7, these inequalities must be equalities,
whence the statements. �

Definition 6.2.3. A ring R is called Cohen-Macaulay if for every p ∈ Spec(R) the
Rp-module Rp is Cohen-Macaulay.

From Proposition 6.2.2 (i) we deduce:

Corollary 6.2.4. A ring R is Cohen-Macaulay if and only if the Rm-module Rm is
Cohen-Macaulay for every maximal ideal m of R.

Proposition 6.2.5. A regular local ring is Cohen-Macaulay.

Proof. Let A be a regular local ring with maximal ideal m. We proceed by induction
on dimA. Any ring of dimension zero is Cohen-Macaulay. If dimA > 0, then we can find
x ∈ m − m2 by Corollary 3.1.5 (or directly by Nakayama’s Lemma 1.1.6). Then A/xA
is a regular local ring of dimension < dimA by Lemma 3.2.4, so is a Cohen-Macaulay
ring by induction. Therefore A/xA is Cohen-Macaulay as an A/xA-module, hence as
an A-module by Lemma 6.1.9. Since A is a domain by Proposition 3.2.6, the nonzero
element x is a nonzerodivisor in A. By Lemma 6.1.6, it follows that A is Cohen-Macaulay
as an A-module, hence is a Cohen-Macaulay ring by Corollary 6.2.4. �

Proposition 6.2.6. Let ρ : R→ S be a flat ring morphism. Assume that the ring R is
Cohen-Macaulay and that for every prime p of R, the ring S⊗R κ(p) is Cohen-Macaulay.
Then the ring S is Cohen-Macaulay.

Proof. Let q ∈ Spec(S), and p = ρ−1q. By assumption (S⊗Rκ(p))q = Sq⊗Rp
κ(p) is

Cohen-Macaulay as a module over itself, and therefore as an Sq-module by Lemma 6.1.9.
Thus the conditions of Proposition 6.1.10 are satisfied with A = M = Rp and B = Sq,
hence Sq is Cohen-Macaulay as a module over itself. �

Proposition 6.2.7. If the ring R is Cohen-Macaulay, then so is R[t1, · · · , tn].

Proof. By induction it suffices to consider the case n = 1. By Proposition 6.2.6, we
may assume that R is a field. Let A be the localisation of the ring R[t1] at a maximal
ideal. Then A is an integral domain of dimension one. The only associated prime of A
is the zero ideal, which differs from its maximal ideal. Hence depthA ≥ 1 = dimA by
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Lemma 5.2.4, and the ring A is Cohen-Macaulay. It follows from Corollary 6.2.4 that the
ring R[t1] is Cohen-Macaulay. �

3. Catenary rings

Definition 6.3.1. We say that a chain of primes p0 ( · · · ( pn is saturated if there
is no prime q and integer i such that pi−1 ( q ( pi.

We say that a ring R is catenary if for every pair of primes p ⊂ q of R, all saturated
chains joining p to q have the same length.

Lemma 6.3.2. A quotient, or a localisation, of a catenary ring is catenary.

Proof. This follows from the description of the primes of a quotient or a localisation.
�

Lemma 6.3.3. If for every pair of primes p ⊂ q of a ring R we have

dimRq = dimRp + dim(Rq/pRq),

then R is catenary.

Proof. Let p ⊂ q be a pair of primes of R. Let p0 ( · · · ( pn a saturated chain of
primes of R, with p0 = p and pn = q. In order to prove the proposition, it will suffice
to prove that n = dim(Rq/pRq). For each i = 1, · · · , n we have dim(Rpi

/pi−1Rpi
) = 1.

Using the condition of the lemma for the pair pi−1 ⊂ pi, we obtain

dimRpi = dimRpi−1 + 1.

This gives by induction
dimRq = dimRp + n.

Now we use the condition for the pair p ⊂ q, and get

dimRp = dimRq + dim(Rq/pRq).

Therefore dim(Rq/pRq) = n. �

Proposition 6.3.4. A Cohen-Macaulay ring is catenary.

Proof. Let p ⊂ q be two primes of a Cohen-Macaulay ring R. The ring Rq is Cohen-
Macaulay by assumption. Applying Proposition 6.2.2 (ii) with A = M = Rq, for the prime
pRq ∈ Supp(Rq), we obtain precisely the condition appearing in Lemma 6.3.3. �

Proposition 6.3.5. Any finitely generated algebra over a Cohen-Macaulay ring is
catenary.

Proof. Let S a be finitely generated algebra over a Cohen-Macaulay ring R. Then
S is a quotient of the ring R[t1, · · · , tn] for some n. The latter ring is Cohen-Macaulay
by Proposition 6.2.7, hence catenary by Proposition 6.3.4. It follows that S is catenary
by Lemma 6.3.2. �

Example 6.3.6. Any finitely generated k-algebra (k a field), or any finitely generated
Z-algebra, is catenary.
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CHAPTER 7

Normal rings

In this chapters section R is a (noetherian commutative unital) ring.

1. Reduced rings

Lemma 7.1.1. Let A be a reduced local ring such that depthA = 0. Then A is a field.

Proof. The maximal ideal m is an associated prime of A (Lemma 5.2.4), hence
m = Ann(u) for some u ∈ A− 0. If A is not a field, then m 6= 0, hence u is a zerodivisor
in A. In particular u is not invertible, and so belongs to m. But then u2 = 0. �

Lemma 7.1.2. Let N be an R-submodule of M . If Np = 0 for every p ∈ Ass(M),
then N = 0.

Proof. Let p ∈ Ass(N). Then p ∈ Ass(M) by Proposition 1.2.5, hence by as-
sumption Np = 0, so that p 6∈ Supp(N), a contradiction with Corollary 1.3.2. Hence
Ass(N) = ∅, and N = 0 by Corollary 1.2.3. �

Proposition 7.1.3. The following conditions are equivalent:

(i) The ring R is reduced.
(ii) For every p ∈ Ass(R), the ring Rp is a field.

(iii) For every prime p, the ring Rp is reduced or has depth ≥ 1.

Proof. (i) ⇒ (ii): We apply Lemma 7.1.1.
(ii) ⇒ (iii): A field is reduced.
(iii) ⇒ (i): The set N of nilpotent elements of R is an ideal of R. We apply

Lemma 7.1.2 to the submodule N ⊂M = R. �

Proposition 7.1.4. A reduced ring has no embedded prime.

Proof. Let R be a reduced ring. If p ( q are elements of Ass(R), then dimRq > 0
and Rq is a field by Lemma 7.1.1, a contradiction. �

Example 7.1.5. Let R be a reduced ring of dimension ≤ 1. Then the ring R is
Cohen-Macaulay. To see this, we may assume that R is local. If depthR = 0, then
dimR = 0 by Lemma 7.1.1. If depthR > 0, then depthR ≥ 1 = dimR.

2. Locally integral rings

Lemma 7.2.1. Let R be a reduced ring with exactly one minimal prime p. Then R is
an integral domain.

Proof. We have Ass(R) = {p} by Proposition 7.1.4, hence R− p consists of nonze-
rodivisors (Lemma 1.2.9), and therefore the localisation morphism R → Rp is injective.
Since Rp is a field by Lemma 7.1.1, its subring R is an integral domain. �
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Remark 7.2.2. Let M be a finitely generated R-module. We say that M is reduced
if for every p ∈ Ass(M) the Rp-module Mp is simple (i.e. lengthRp

Mp = 1). We say that

M is integral if it is reduced and has exactly one associated (or equivalently, minimal)
prime.

Then a ring is reduced, resp. an integral domain, if and only if it is reduced, resp.
integral, as a module over itself.

Lemma 7.2.3. Let f : M → N be a morphism of finitely generated R-modules.

(i) If fp : Mp → Np is injective for every p such that depthRp
Mp = 0, then f is

injective.
(ii) If fp : Mp → Np is bijective for every p such that depthRp

Np = 0 or depthRp
Mp ≤

1, then f is bijective.

Proof. (i) : Apply Lemma 7.1.2 to the submodule ker f ⊂M .
(ii) : We know by (i) that f is injective. Let Q = coker f , and p ∈ Ass(Q). Then we

have an exact sequence of Rp-modules (Proposition 4.5.4)

Hom(κ(p), Np)→ Hom(κ(p), Qp)→ Ext1(κ(p),Mp).

Since Qp 6= 0, the morphism fp is not surjective, hence by our assumptions, the modules
on the left and right of the sequence above vanish, hence so does the module in the middle.
Thus pRp 6∈ AssRp

(Qp), hence p 6∈ Ass(Q) by Proposition 1.2.10. Thus Ass(Q) = ∅, and
Q = 0 by Corollary 1.2.3. �

Definition 7.2.4. Let R be a ring, and S a subset of Spec(R). A subset of S is
closed if its is of the form S ∩ Supp(M), where M is a finitely generated R-module. We
say that S is connected if it cannot be written as the disjoint union of two non-empty
closed subsets.

Remark 7.2.5. One can check that this defines a topology on Spec(R), the Zariski
topology. We will not use this remark.

Lemma 7.2.6. If there are ideals J0, J1 6= R such that the diagonal ring morphism
f : R→ R/J0 ×R/J1 is bijective, then Spec(R) is not connected.

Proof. We have J0 ∩ J1 = ker f = {0}. It follows that every prime contains the
product ideal J0J1, hence one of the ideals Ji for i ∈ {0, 1}. This proves that Supp(R/J0)∪
Supp(R/J1) = Spec(R). Using the surjectivity of f , we find x ∈ R such that x− 1 ∈ J0
and x ∈ J1. Thus 1 ∈ J0 + J1, so that no prime contains both J0 and J1. Therefore
Supp(R/J0) ∩ Supp(R/J1) = ∅. �

Remark 7.2.7. The converse of Lemma 7.2.6 is true and can be deduced from the
proof of Theorem 7.2.9.

Lemma 7.2.8. The spectrum of a local ring is connected.

Proof. Since the maximal ideal contains every prime, it is an element of every non-
empty closed subset of the spectrum. Thus the latter cannot decompose as a disjoint
union of non-empty closed subsets. �

Theorem 7.2.9 (Hartshorne). Let (A,m) be a local ring of depth ≥ 2. Then Spec(A)−
{m} is connected.
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Proof. Assume that Spec(A)−{m} is not connected. Then we can find two subsets
F0 and F1 closed in Spec(A), such that F0∩F1 ⊂ {m} and Spec(A)−{m} ⊂ F1∪F0. The
set Ass(A) does not contain m by assumption, hence decomposes as the disjoint union of
Ass(A) ∩ F0 and Ass(A) ∩ F1. By Proposition 1.2.7, we can find for each i ∈ {0, 1} an
ideal Ji such that

AssA(A/Ji) = Ass(A) ∩ Fi and AssA(Ji) = Ass(A) ∩ F1−i.

The subset Fi contains AssA(A/Ji) and AssA(J1−i). Since it is closed, it contains
SuppA(A/Ji) and SuppA(J1−i). In particular J1−i 6= A (as Fi 6= Spec(A)).

Consider the diagonal ring morphism f : A → A/J0 × A/J1 = N . Let p ∈ Spec(A)
be such that p 6= m. Then there is i ∈ {0, 1} such that p 6∈ Fi. Thus p 6∈ Supp(A/Ji) and
p 6∈ Supp(J1−i), and we deduce that the morphism fp is bijective. In particular, this is so
when depthAp

Np = 0 (because Ass(N) ⊂ Ass(A) by Proposition 1.2.5, and m 6∈ Ass(A)

by assumption), or when depthAp ≤ 1 (by assumption). It follows from Lemma 7.2.3
(ii) that f is bijective, hence Spec(A) is not connected by Lemma 7.2.6. This contradicts
Lemma 7.2.8. �

Definition 7.2.10. A ring R is locally integral if the ring Rp is an integral domain
for every p ∈ Spec(R).

Proposition 7.2.11. The following conditions are equivalent:

(i) The ring R is locally integral.
(ii) For every p ∈ Spec(R), the ring Rp is an integral domain or has depth ≥ 2.

Proof. (i) ⇒ (ii) : Clear.
(ii) ⇒ (i): We assume that R is local, and show that R is an integral domain.

We know that R is reduced by Proposition 7.1.3, so it will suffice to prove that R has a
unique minimal prime by Lemma 7.2.1. Assuming the contrary, the set of minimal primes
decomposes as the disjoint union of two non-empty subsets M0 and M1. For i ∈ {0, 1},
let Qi = R/Ji be a quotient of R such that AssR(Qi) = Mi (Proposition 1.2.7). If
q ∈ Spec(R), then q contains a minimal prime, and therefore an element of AssR(Qi) for
some i ∈ {0, 1}. It follows that q ∈ SuppR(Qi). Thus we have Spec(R) = SuppR(Q0) ∪
SuppR(Q1). The set SuppR(Q0)∩ SuppR(Q1) is non-empty (see Lemma 7.2.8; namely it
contains the maximal ideal); let p be a minimal element of this set (i.e. a prime minimal
over J0 + J1), and write Xi = SuppRp

((Qi)p) for i ∈ {0, 1}. If we view Spec(Rp) as a

subset of Spec(R), then Xi = SuppR(Qi) ∩ Spec(Rp), hence

Spec(Rp) = X0 ∪X1 and X0 ∩X1 = {pRp}.
Since p ∈ Supp(Q0) ∩ Supp(Q1), it is not a minimal prime of R, hence Xi − {pRp}
contains Mi, and in particular is not empty. This gives a decomposition of the set
Spec(Rp)−{pRp} as the disjoint union of two non-empty closed subsets. By Theorem 7.2.9
we have depthRp ≤ 1, hence by assumption the ring Rp is an integral domain. In
particular p contains exactly one minimal prime of R. But for each i ∈ {0, 1}, we have
p ∈ SuppR(Qi), hence p contains an element of Mi, a contradiction. �

3. Normal rings

Definition 7.3.1. A ring is an integrally closed domain if it is an integral domain,
and coincides with its integral closure in its fraction field. We say that a ring R is normal
if the ring Rp is an integrally closed domain for every p ∈ Spec(R).
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Lemma 7.3.2. Let A be a local integrally closed domain such that depthA = 1. Then
A is a discrete valuation ring.

Proof. Let m be the maximal ideal of A. Since m 6∈ Ass(A), we can find a nonze-
rodivisor x ∈ m. Then depthAA/xA = 0 by Proposition 5.2.2, hence m ∈ AssA(A/xA).
Therefore there is an element a ∈ A such that a 6∈ xA and am ⊂ xA. We let K be the
fraction field of A and t = ax−1 ∈ K, and consider the A-submodule T of K generated
by t. Then mT ⊂ A is an ideal of A.

Assume that mT ⊂ m. Then we see by induction that for all n ∈ N, the element
un = tnx belongs to m. Since A is noetherian, for n large enough the element un is an
A-linear combination of the elements ui for i < n. This gives a unital polynomial p with
coefficients in A such that p(t)x = 0 in K. Since x is invertible in K, it follows that
p(t) = 0, showing that t is integral over A. Since A is integrally closed in K, we have
t ∈ A, contradicting the choice of a.

So mT = A, and there is u ∈ m such that ut = 1. Then

m = (ut)m = u(tm) ⊂ u(mT ) = uA.

So m = uA. Moreover u is a nonzerodivisor in A, since ua = x is one. This proves that
A is a discrete valuation ring. �

Example 7.3.3. Let R be a normal ring of dimension ≤ 2. Then R is Cohen-
Macaulay. Indeed we may assume that R is local, and is an integrally closed domain.
If depthR = 0, then dimR = 0 by Lemma 7.1.1. If depthR = 1, then dimR = 1 by
Lemma 7.3.2. Otherwise depthR ≥ 2 = dimR, so that in any case R is Cohen-Macaulay

Theorem 7.3.4 (Serre). The following conditions are equivalent:

(i) The ring R is normal.
(ii) Let p ∈ Spec(R). If depthRp = 0, then the ring Rp is a field. If depthRp = 1, then

the ring Rp is a discrete valuation ring.
(iii) For every p ∈ Spec(R), the ring Rp is an integrally closed domain or has depth ≥ 2.

Proof. (i) ⇒ (ii): This follows from Lemma 7.1.1 and Lemma 7.3.2.
(ii) ⇒ (iii): Fields and discrete valuation rings are integrally closed domains.
(iii) ⇒ (i): We may assume that the ring R is local, and prove that it is an integrally

closed domain. The ring R is an integral domain by Proposition 7.2.11. Let R′ be
the integral closure of R in its function field, and p ∈ Spec(R). If depthRp ≤ 1, then
the morphism Rp → R′p is bijective because Rp is integrally closed (integral closure
commutes with localisation). On the hand R′ is an integral domain containing R, hence
AssR(R′) = {0}. Thus if depthRp

R′p = 0, then p = 0 ∈ Ass(R), hence depthRp ≤ 1,

so that we are in the case considered above. It follows from Lemma 7.2.3 that R = R′,
hence R is an integrally closed domain. �

Definition 7.3.5. Let n be an integer n. We consider the following conditions on a
ring R.

(Rn) : For every prime p of height ≤ n, the local ring Rp is regular.
(Sn) : For every prime p, we have depthRp ≥ min(height p, n).

We have proved

Proposition 7.3.6. Let R be a ring. Then:

(i) R reduced ⇐⇒ R satisfies (R0) and (S1).
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(ii) R normal ⇐⇒ R satisfies (R1) and (S2).

If R is a Cohen-Macaulay ring, then for every p, we have height p = depthRp, so that
R satisfies the condition (Sn) for every n. Thus we obtain:

Proposition 7.3.7. A Cohen-Macaulay ring R is

(i) reduced if and only if the ring Rp is so for every minimal prime p,
(ii) locally integral if and only if the ring Rp is so for every prime p of height ≤ 1,

(iii) normal if and only if the ring Rp is so for every prime p of height ≤ 1.
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CHAPTER 8

Projective dimension

In this chapter (A,m, k) is a local commutative noetherian ring.

1. Projective dimension over a local ring

Proposition 8.1.1. Let M be a finitely generated A-module. The following condi-
tions are equivalent:

(i) M is free.
(ii) M is projective.

(iii) M is flat.
(iv) Tor1(M,k) = 0.
(v) Ext1(M,k) = 0

Proof. We have (i) ⇒(ii) ⇒(iii) ⇒ (iv) and (ii) ⇒ (v).
Let m1, · · · ,mn be elements of M giving modulo mM a k-basis of M/mM . This

gives a morphism ϕ : An → M , which is surjective by Nakayama’s Lemma 1.1.6. Let Q
be its kernel. We have an exact sequence

Tor1(M,k)→ Q⊗A k → An ⊗A k
ϕ⊗Ak−−−−→M ⊗A k → 0.

If Tor1(M,k) = 0, since ϕ ⊗A k is injective, we obtain Q ⊗A k = 0, hence Q = 0 by
Nakayama’s Lemma 1.1.6. This proves (iv) ⇒ (i).

We also have an exact sequence

0→ HomA(M,k)
ϕ∗−−→ HomA(An, k)→ HomA(Q, k)→ Ext1A(M,k).

The morphism ϕ∗ decomposes as a sequence of isomorphisms

HomA(M,k)→ Homk(M ⊗A k, k)
(ϕ⊗Ak)

∗

−−−−−−→ Homk(An ⊗A k, k)→ HomA(An, k)

hence is an isomorphism. Thus if Ext1A(M,k) = 0, then 0 = HomA(Q, k) = Homk(Q⊗A
k, k), hence Q⊗A k = 0, and finally Q = 0 by Nakayama’s Lemma 1.1.6. This proves (v)
⇒ (i). �

Definition 8.1.2. Let R be a commutative unital ring. The projective dimension
of an R-module M , denoted projdimRM ∈ N ∪ {−∞,∞}, is defined as the infimum of
the lengths n of the finite projective resolutions 0 → Ln → · · · → L0 → M → 0 of M if
M 6= 0, and as −∞ if M = 0.

Since the functors Ext and Tor may be computed using any projective resolution of
M , we see that

Torn(M,−) = Extn(M,−) = 0 when n > projdimRM.
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Proposition 8.1.3. Let M be a finitely generated A-module and n an integer. The
following conditions are equivalent:

(i) projdimM ≤ n.
(ii) Torn+1(M,k) = 0.

(iii) Extn+1(M,k) = 0.
(iv) Let 0→ Ln → · · · → L0 → M → 0 be an exact sequence with and Li projective for

i = 0, · · · , n− 1. Then Ln is projective.

Proof. It is clear that (ii) ⇐ (i) ⇒ (iii) and that (iv) ⇒ (i).
Let us now prove (iv) using (ii) or (iii). Let Zi = im(Li → Li−1) for i = 1, · · · , n− 1,

and let Z0 = M and Zn = Ln. We have exact sequences, for i = 0, · · · , n− 1,

0→ Zi+1 → Li → Zi → 0,

giving exact sequences (Proposition 4.5.3)

Extj(Li, k)→ Extj(Zi+1, k)→ Extj+1(Zi, k)→ Extj+1(Li, k)

and (Proposition 4.3.3)

Torj+1(Li, k)→ Torj+1(Zi, k)→ Torj(Zi+1, k)→ Torj(Li, k).

Since for j > 0 the four extreme modules vanish, we obtain

Extj(Zi+1, k) ' Extj+1(Zi, k) and Torj+1(Zi, k) ' Torj(Zi+1, k),

and we conclude that

Ext1(Ln, k) ' Extn+1(M,k) and Tor1(Ln, k) ' Torn+1(M,k),

so that Ln is free by Proposition 8.1.1 under the assumption (ii) or (iii). �

Corollary 8.1.4. Let M,M ′ be two finitely generated A-modules. Then

projdim(M ⊕M ′) = max(projdimM, projdimM ′).

We will use the following technical lemma in the next proof.

Lemma 8.1.5. Let R be a commutative ring. Consider an exact sequence of R-modules

M1
f1−→M2

f2−→M3
f3−→M4,

and let x ∈ R be a nonzerodivisor in M4. Then the sequence of R/xR-modules

M1/xM1 →M2/xM2 →M3/xM3

is exact.

Proof. The sequence is clearly a complex. Let m2 ∈M2 and assume that f2(m2) =
xm3 for some m3 ∈M3. We have xf3(m3) = f3 ◦ f2(m2) = 0. Since x is a nonzerodivisor
in M4, it follows that f3(m3) = 0, hence m3 = f2(m′2) for some m′2 ∈ M2. Therefore
m2 − xm′2 = f1(m1) with m1 ∈M1. This proves the statement. �

Proposition 8.1.6. Let M be a finitely generated A-module, and x ∈ m be a nonze-
rodivisor in M and in A. We have, for every n, isomorphisms of A-modules

TorA/xAn (M/xM, k) ' TorAn (M,k) and ExtnA/xA(M/xM, k) ' ExtnA(M,k).

In particular
projdimA/xAM/xM = projdimAM.
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Proof. Let L → M be a (possibly infinite) free resolution of the A-module M
(Proposition 4.2.6). The A/xA-modules Ln/xLn = Ln ⊗A (A/xA) are free, and fit into
the complex of A/xA-modules L/xL = L ⊗A (A/xA). For every n, the element x is a
nonzerodivisor in Ln and in M , hence L/xL → M/xM is a free resolution the A/xA-
module M/xM by Lemma 8.1.5. Since x ∈ m, the morphisms of complexes of A-modules

L⊗A k → (L/xL)⊗A/xA k and HomA/xA(L/xL, k)→ HomA(L, k)

are bijective in each degree, hence are quasi-isomorphisms. �

2. The Auslander-Buchsbaum formula

We will use the following

Lemma 8.2.1. Consider an exact sequence of finitely generated A-modules

0→M ′ →M →M ′′ → 0.

If projdimM < projdimM ′′, then projdimM ′ = projdimM ′′ − 1.

Proof. Let n ≥ projdimM ′′. Using the exact sequence (Proposition 4.3.3)

Torn+1(M,k)→ Torn+1(M ′′, k)→ Torn(M ′, k)→ Torn(M,k)

we see that Torn(M ′, k) ' Torn+1(M ′′, k). Taking n = projdimM ′′, we obtain Torn(M ′, k) =
0, hence projdimM ′ ≤ projdimM ′′ − 1 in view of Proposition 8.1.3. Taking n =
projdimM ′′ − 1, we obtain Torn(M ′, k) 6= 0, hence projdimM ′ ≥ projdimM ′′ − 1. �

Theorem 8.2.2 (Auslander-Buchsbaum). Let M be a finitely generated A-module of
finite projective dimension. Then

projdimM + depthM = depthA.

Proof. We argue by induction on projdimM .
If projdimM = 0, then M is free by Proposition 8.1.1 (and nonzero), and depthM =

depthA by Lemma 5.2.10.
If projdimM = 1, we let E be a (finite) family of elements of M whose image in

M/mM form a k-basis. This gives a morphism ϕ : L0 → M , where L0 is the free A-
module with basis E. Since ϕ ⊗A k is an isomorphism, the morphism ϕ is surjective by
Nakayama’s Lemma 1.1.6, and its kernel L1 is contained in mL0. So we have an exact
sequence of A-modules

0→ L1
d−→ L0 →M → 0

with d(L1) ⊂ mL0. By Lemma 8.2.1, we have projdimL1 = projdimM − 1 = 0, so that
the A-module L1 is free by Proposition 8.1.1. It is also finitely generated, and we deduce
that the morphism of A-modules

mHomA(L1, L0)→ HomA(L1,mL0)

is surjective. Thus d = x1d1 + · · · + xndn for some xj ∈ m and dj ∈ HomA(L1, L0)

for j = 1, · · · , n, so that the morphism Exti(k, d) = x1 Exti(k, d1) + · · · + xn Exti(k, dn)
(Proposition 4.5.2 (v)) vanishes for every i (observe that mExti(k, L0) = 0 by Proposi-
tion 4.5.2 (iv)). We obtain short exact sequences of A-modules (Proposition 4.5.4), for
every i,

0→ Exti(k, L0)→ Exti(k,M)→ Exti+1(k, L1)→ 0.
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Now L0 and L1 are free, and nonzero (because projdimM = 1), hence depthL1 =
depthL0 = depthA by Lemma 5.2.10. It follows that depthM = depthA− 1.

Now let us assume that projdimM ≥ 2. Choose an exact sequence of A-modules

0→ N → L→M → 0.

with L free and finitely generated (and nonzero). We have projdimN = projdimM − 1
by Lemma 8.2.1. Thus we obtain by induction

projdimN + depthN = depthA.

In particular depthN < depthA = depthL (Lemma 5.2.10). Using the long exact se-
quence of A-modules

Exti−1(k, L)→ Exti−1(k,M)→ Exti(k,N)→ Exti(k, L),

we see that depthM = depthN − 1, as required. �

Corollary 8.2.3. Let M be a finitely generated A-module of finite projective dimen-
sion. Then

(i) projdimM ≤ depthA, with equality if and only if m ∈ Ass(M).
(ii) depthM ≤ depthA, with equality if and only if M is free and nonzero.
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CHAPTER 9

Regular rings

In this chapter A is a local ring.

1. Homological dimension

Definition 9.1.1. The homological dimension of a commutative unital noetherian
ring R is the supremum of the integers projdimRM , where M runs over the finitely
generated R-modules. It is denoted dimhR ∈ N ∪ {∞}.

Remark 9.1.2. We can show (using Baer’s criterion) that dimhR is the supremum
projdimRM , where M runs over all R-modules.

Proposition 9.1.3. Let A be a local (noetherian) ring with residue field k. Then

dimhA = projdimA k = sup{n | TorAn (k, k) 6= 0} = inf{n | TorAn+1(k, k) = 0}.

Proof. The last two equalities follow from Proposition 8.1.3. Let m = projdimA k,

andM be a finitely generated A-module. Then TorAm+1(k,M) = 0, hence TorAm+1(M,k) =
0 by Proposition 4.3.5, and thus projdimAM ≤ m by Proposition 8.1.3. Therefore
dimhA ≤ m; the other inequality is immediate. �

Corollary 9.1.4. If the homological dimension of a local (noetherian) ring is finite,
it is equal to its depth.

Proof. Let A be the local ring, k its residue field. We have depthA k = 0. We
apply the Auslander-Buchsbaum Theorem 8.2.2 to the A-module k, and obtain that
projdimA k = depthA. �

2. Regular rings

Theorem 9.2.1 (Serre). A local ring is regular if and only if it has finite homological
dimension.

Proof. Let (A,m, k) be a local ring. Assume that A is regular. We prove by
induction on n = dimA that projdimA k = n (see Proposition 9.1.3). This is clear when
n = 0, because then A = k by Example 3.2.2. Assume that n > 0. Let {x1, · · · , xn} be a
regular system of parameters for A. Then the local ring A/xnA is regular of dimension
n − 1 (Lemma 3.2.4). Since A is an integral domain by Proposition 3.2.6, the nonzero
element xn is a nonzerodivisor in A. By Proposition 6.2.5, the ring A is Cohen-Macaulay,
hence by Proposition 6.1.7 the tuple (x1, · · · , xn) is an A-regular sequence. Thus xn
is a nonzerodivisor in K = A/{x1, · · · , xn−1}A. By Proposition 8.1.6, it follows that
projdimAK = projdimA/xnA k. By induction we have dimhA/xnA = n − 1, hence
projdimAK = n− 1. We have an exact sequence of A-modules

0→ K
xn−−→ K → k → 0.
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This gives a long exact sequence (Proposition 4.3.3)

TorAi (K, k)→ TorAi (K, k)→ TorAi (k, k)→ TorAi−1(K, k)→ TorAi−1(K, k).

By Proposition 4.3.2 (vi), the morphism TorAi (K, k) → TorAi (K, k) is multiplication by
xn. Since xn ∈ m acts trivially on k, this morphism vanishes by Proposition 4.3.2 (vi).
We obtain short exact sequences, for every i,

0→ TorAi (K, k)→ TorAi (k, k)→ TorAi−1(K, k)→ 0.

Taking i = n + 1, since TorAn (K, k) = TorAn+1(K, k) = 0, we see that TorAn+1(k, k) = 0,

thus projdimA k ≤ n by Proposition 8.1.3. Taking i = n, we have TorAn−1(K, k) 6= 0 by

Proposition 8.1.3, so that TorAn (k, k) 6= 0 and thus projdimA k ≥ n.

For the converse, we proceed by induction on n = dimhA. Assume that n = 0. Then
projdimA k = 0, so that the A-module k is free, and (being nonzero) contains a copy of
A. Thus m = AnnA(k) = 0, hence A is a field, hence a regular local ring (Example 3.2.2).
Now we assume that ∞ > n > 0. We have depthA = n by Corollary 9.1.4, and thus
m 6∈ Ass(A) (Lemma 5.2.4). We have m2 6= m by Nakayama’s Lemma 1.1.6 (otherwise
m = 0 and A is a field, a contradiction with the fact that n > 0). By prime avoidance
(Proposition 2.4.5), we can find an element x ∈ m which is not in m2, nor in any of the
finitely many associated primes of A (Corollary 1.3.6). By Lemma 1.2.9, the element x
is a nonzerodivisor in A. Let B = A/xA, and n = m/xA its maximal ideal. Consider the
complex of B-modules

0→ k
u−→ m/xm

v−→ n→ 0,

where u is induced by the map A → m, r 7→ xr, and v is the natural quotient m/xm →
m/xA = n. We claim that the sequence is exact. Indeed v is surjective and we have
ker v = xA/xm = imu. If a ∈ A is such that a mod m ∈ keru, then xa = xm for some
m ∈ m. Thus x(a −m) = 0, and since x is a nonzerodivisor in A, we have a = m ∈ m,
proving that u is injective.

The natural morphism of k-vector spaces m/m2 → Homk(Homk(m/m2, k), k) is in-
jective (in fact bijective). Therefore since x 6= 0 mod m2, we may find a linear form
ϕ : m/m2 → k such that ϕ(x) 6= 0 ∈ k. Replacing ϕ with (1/ϕ(x)) · ϕ, we may assume
that ϕ(x) = 1. Composing ϕ with the surjection m/xm→ m/m2, we obtain a morphism
of B-modules ψ : m/xm→ k sending x mod xm to 1. This gives a splitting of the exact
sequence above (we have ψ ◦ u = idk), so that we have a decomposition as B-modules

m/xm = k ⊕ n.

It follows from Corollary 8.1.4 that

projdimB k ≤ projdimB m/xm.

From Proposition 8.1.6, we know that

projdimB m/xm = projdimAm.

Since this quantity is smaller than dimhA = n, we have projdimB k < ∞, so that
B has finite homological dimension (Proposition 9.1.3). We have depthB = n − 1 by
Proposition 5.2.2, hence dimhB = n−1 by Corollary 9.1.4. By the induction hypothesis,
the local ring B is regular. Therefore A is a regular local ring by Lemma 3.2.5. �
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Corollary 9.2.2. Let A be a regular local ring, and p a prime of A. Then Ap is a
regular local ring.

Proof. Let n = projdimAA/p. Then we may find an exact sequence of A-modules
0 → Ln → · · · → L0 → A/p → 0 with Li free and finitely generated for i = 0, · · · , n− 1
(Lemma 4.2.1). By Proposition 8.1.3, the module Ln is projective. Since Ln is finitely
generated, it is free by Proposition 8.1.1. Localising the finite resolution 0→ Ln → · · · →
L0 → A/p → 0 at p, we obtain a finite resolution of the Ap-module (A/p)p = κ(p) by
free, hence projective, Ap-modules. Thus projdimAp

κ(p) < ∞, hence dimhAp < ∞ by
Proposition 9.1.3, and finally Ap is regular by Theorem 9.2.1. �

Corollary 9.2.3. A regular local ring is an integrally closed domain.

Proof. Let A be a regular local ring, and p a prime of A. The ring Ap is a regular
local ring by Corollary 9.2.2. If depthAp = 0, since Ap is a reduced local ring, it is a field
by Lemma 7.1.1. If depthAp = 1, then Ap is a regular local ring of dimension one, that is,
a discrete valuation ring by Example 3.2.3. It follows that A is normal by Theorem 7.3.4,
and being local, is an integrally closed domain. �

Definition 9.2.4. A ring R is called regular if Rp is a regular local ring for every
prime p. By Corollary 9.2.2, it is equivalent to require that Rm be a regular local ring for
every maximal ideal m.
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CHAPTER 10

Factorial rings

In this chapter R is a commutative unital noetherian ring.

1. Locally free modules

Lemma 10.1.1. An ideal of R is a free R-module of rank one if and only if it is
generated by a nonzerodivisor in R.

Proof. If I = iR with i a nonzerodivisor in R, then the surjective morphism R→ I,
r 7→ ri must be injective, because so is the composite R→ I ⊂ R.

Conversely, if I is free and generated by i, we have an isomorphism R → I, r 7→ ri.
The composite R→ I ⊂ R is injective and coincides with multiplication by i in R, proving
that i is a nonzerodivisor in R. �

Definition 10.1.2. An R-module M is locally free if the Rp-module Mp is free for
every p ∈ Spec(R). We say that the R-module M is locally free of rank n if the Rp-module
Mp is free of rank n for every p ∈ Spec(R).

Lemma 10.1.3. Let M,N be R-module with M finitely generated, and let S be a
multiplicatively closed subset of R. Then the morphism of S−1R-modules

S−1 HomR(M,N)→ HomS−1R(S−1M,S−1N)

is bijective

Proof. Since M is finitely generated and R is noetherian we may find finitely gen-
erated free modules F0, F1 fitting into an exact sequence

F1 → F0 →M → 0.

We deduce a commutative diagram with exact rows

0 // S−1 HomR(M,N)

��

// S−1 HomR(F0, N)

��

// S−1 HomR(F1, N)

��
0 // HomS−1R(S−1M,S−1N) // HomS−1R(S−1F0, S

−1N) // HomS−1R(S−1F1, S
−1N)

A diagram chase shows that it suffices to prove that the two rightmost vertical arrows are
isomorphisms. We thus reduced to assuming that M is free, in which case the statement
is clear (to give a morphism from a free module consists exactly in specifying the image
of a basis). �

Proposition 10.1.4. If P is a finitely generated and locally free R-module, then P
is projective.
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Proof. Let M → N be a surjective morphism of R-modules. To prove that the
morphism of R-modules HomR(P,M)→ HomR(P,N) is surjective, it will suffice to prove
that the morphism of Rp-modules (HomR(P,M))p → (HomR(P,N))p is surjective for
every p ∈ Spec(R). By Lemma 10.1.3, the latter morphism may be identified with
HomRp

(Pp,Mp) → HomRp
(Pp, Np), which is surjective because the Rp-module Pp is

projective (being free). �

Definition 10.1.5. A finitely generated R-module M is stably free if there is a finitely
generated free R-module F such that M ⊕ F is a free R-module.

Lemma 10.1.6. A finitely generated projective R-module admitting a finite resolution
by finitely generated free modules is stably free.

Proof. We prove the statement by induction on the length n of the resolution. Let
M be the module, and 0→ Fn → · · · → F0 →M → 0 its resolution. Let N = ker(F0 →
M). Then the exact sequence

0→ N → F0 →M → 0

splits because M is projective. Since N ⊕M ' F0 is free, it follows that N is projective.
The R-module N is also finitely generated (being a quotient of F0). We have a finite
resolution 0 → Fn → · · · → F1 → N → 0 of N by finitely generated free modules of
length n− 1, hence by induction there is a finitely generated free R-module F such that
G = N ⊕F is free. Then M ⊕G = M ⊕N ⊕F ' F0⊕F is free, and M is stably free. �

2. The exterior algebra

Definition 10.2.1. Let M be an R-module. For every integer n ≥ 0, we define an
R-module ΛnRM = ΛnM as the quotient of M⊗n = M ⊗R · · · ⊗R M by the submodule
generated by the elements m1 ⊗ · · · ⊗mn with mi = mj for some i 6= j.

The morphism M⊗m ⊗R M⊗n → M⊗m+n induces a surjective morphism ΛmM ⊗R
ΛnM → Λm+nM that we denote by x ⊗ y 7→ x ∧ y. This operation turns ΛRM =
ΛM =

⊕
n≥0 ΛnR into an R-algebra equipped with a morphism of R-modules M → ΛM ,

satisfying the following universal property. If B is an R-algebra, then any morphism
of R-modules f : M → B such that f(m)2 = 0 for any m ∈ M extends uniquely to a
morphism of R-algebras ΛM → B.

Remark 10.2.2. We have Λ0M ' R, and Λ1M 'M .

The following results may be proved using the universal property of the exterior
algebra.

Proposition 10.2.3. (i) If R→ S is a ring morphism and M an R-module, then
(ΛnRM)⊗R S ' ΛnS(M ⊗R S).

(ii) Let M,N be two R-modules. Then we have an isomorphism of graded R-algebras
Λ(M ⊕N) ' ΛM ⊗ ΛN .

Lemma 10.2.4. Let M be a finitely generated, locally free R-module of rank one. Then
ΛiM = 0 for i > 1.

Proof. It will be enough to prove that the Rp-module (ΛiM)p = Λi(Mp) (Propo-
sition 10.2.3 (i)) vanishes for every p ∈ Spec(R). Thus we may assume that M is free,
generated by an element m. If x, y ∈ M , and z ∈ Λi−2M , then x and y are scalar
multiples of m, hence x ∧ y ∧ z is a scalar multiple of m ∧m ∧ z = 0 ∧ z = 0. �
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We denote by Rm = R⊕ · · · ⊕R the free R-module of rank m (with a given basis).

Lemma 10.2.5. Let L be a finitely generated, locally free R-module of rank one. Then

Λn(L⊕Rn−1) ' L.

Proof. By Proposition 10.2.3 (ii), we have

Λn(L⊕Rn−1) '
⊕

i1+...+in=n

Λi1L⊗ Λi2R⊗ · · · ⊗ ΛinR.

In view of Remark 10.2.2 and Lemma 10.2.4, there is only one nonzero summand in the
right hand side, namely L, when i1 = · · · = in = 1. �

Proposition 10.2.6. Let L be a finitely generated, locally free R-module of rank one.
If L is stably free, then L is free of rank one.

Proof. We may assume that R 6= 0. There are integers m and n such that L ⊕
Rm ' Rn. Choosing p ∈ Spec(R) and applying − ⊗R κ(p) to that isomorphism, we see
that m = n − 1 (isomorphic κ(p)-vector spaces have the same dimension). Then using
Lemma 10.2.5 twice (for the modules L and R), we obtain isomorphisms of R-modules

R ' ΛnRn ' Λn(L⊕Rn−1) ' L. �

3. Factorial rings

Definition 10.3.1. An element x ∈ R is called irreducible if it is not a unit, and
whenever x = ab then a or b is a unit.

Lemma 10.3.2. Any nonzero non-unit element of an integral domain decomposes as
the product of finitely many irreducible elements.

Proof. Assume that x ∈ R does not decompose that way. We construct by induction
an infinite chain of principal ideals xnR ( xn+1R ( · · · , with xn nonzero non-unit
admitting no decomposition as above. This will contradict the noetherianity of R. We
let x0 = x. Now assume that xn is constructed. Since xn is nonzero, not a unit and not
irreducible, it can be factored as ab with a, b non-units and nonzero. Then one element
xn+1 ∈ {a, b} does not decompose as a product of irreducible elements (otherwise x
would). We have xnR ⊂ xn+1R. In case of equality, we have xn+1 = xnc for some c ∈ R.
Then abc ∈ {a, b}, which implies (since R is an integral domain and a, b are nonzero)
1 ∈ {bc, ac}, and therefore one of the elements b or a is a unit, a contradiction. �

Definition 10.3.3. A ring is a factorial if it is an integral domain and every ideal
generated by an irreducible element is prime.

Lemma 10.3.4. An integral domain is factorial if and only if every height one prime
is principal.

Proof. Let R be a factorial ring, and let p be a prime of height one of R. Let
x ∈ p − {0}. By Lemma 10.3.2, we may decompose x as p1 · · · pn with pi irreducible
elements (possibly not pairwise distinct). Then there is an index i such that pi ∈ p. We
have 0 ( piR ⊂ p, and the ideal piR is prime because R is factorial. Since height p = 1,
it follows that piR = p.

Conversely, assume that every height one prime of R is principal. Let x ∈ R be an
irreducible element. Let p be a minimal prime over xR. Then by Krull’s Theorem 2.3.2,
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the prime p has height one, hence by assumption p = pR for some p ∈ R. We have
xR ⊂ pR, hence x = pq for some q ∈ R. Since p is not a unit (otherwise p = R) and x
is irreducible, the element q has to be a unit. Therefore xR = pR, proving that xR is
prime. �

Proposition 10.3.5. A factorial ring is normal.

Proof. Let R be a factorial ring, and p ∈ Spec(R). If depthRp = 0, the reduced ring
Rp must be a field by Lemma 7.1.1. If depthRp = 1, then height p = dimRp ≥ 1, hence
we can find a prime q of height one such that q ⊂ p. Since R is factorial, there is x ∈ R
such that q = xR. The image of x in pRp is a nonzero element of the integral domain
Rp, and is thus a nonzerodivisor in Rp. Therefore depthRp/xRp = depthRp − 1 = 0
by Proposition 5.2.2. Since the ideal xR ⊂ R is prime and contained in p, the ideal
xRp ⊂ Rp is prime. Thus the ring Rp/xRp is an integral domain, and being of depth
zero, it is a field by Lemma 7.1.1. Thus Rp is an integral domain whose maximal ideal
xRp = pRp is principal, hence a discrete valuation ring. We conclude using Serre’s
criterion Theorem 7.3.4. �

Remark 10.3.6. A factorial ring is also called a Unique Factorisation Domain (UFD).
One may prove that a ring is factorial if and only if the decomposition of every element
into a product of irreducible elements is unique (up to order and multiplication by units).
Then using this characterisation, the classical proof that Z is an integrally closed domain
can be used to give another proof of Proposition 10.3.5.

Lemma 10.3.7 (Nagata). Let R be an integral domain, and x ∈ R−{0} be such that
xR is a prime ideal of R. If R[x−1] is factorial, then so is R.

Proof. By Lemma 10.3.4, it will suffice to take a prime p of height one in R, and
prove that the ideal p is principal. This is true if p = xR. Otherwise, since p has height
one, we must have x 6∈ p, and therefore xn 6∈ p for every n. It follows that pR[x−1] is
a prime of height one in R[x−1]. By assumption, we can find y ∈ pR[x−1] such that
pR[x−1] = yR[x−1]. Multiplying with a power of x, we may assume that y ∈ p. Let E be
the set of elements y ∈ p such that pR[x−1] = yR[x−1]. We have just seen that E 6= ∅.
Now the set of ideals {yR|y ∈ E} of R admits a maximal element yR with y ∈ E since R
is noetherian.

We claim that y 6∈ xR. Indeed if y = ax with a ∈ R, then a ∈ E and yR ⊂ aR. By
maximality yR = aR, hence we can find b ∈ R such that a = by. Thus y = bxy, hence
since R is an integral domain and y 6= 0 (because the prime pR[x−1] is not zero, being of
height one), it follows that bx = 1, hence xR = R, a contradiction with assumption that
xR is prime, proving the claim.

We now prove that p = yR. Since y ∈ p by construction, it will suffice to prove
that p ⊂ yR. Let r ∈ p. Since yR[x−1] = pR[x−1], we have xnr = yc for some c ∈ R
and n ∈ N. We prove that r ∈ yR by induction on n. This is true if n = 0. Assume
that n > 0. Then yc ∈ xR, and since y 6∈ xR and xR is prime, we have c ∈ xR. Thus
xn−1r = yc, and by induction r ∈ yR. �

Theorem 10.3.8 (Auslander-Buchsbaum). A regular local ring is factorial.

Proof. Let A be a regular local ring, with maximal ideal m. We proceed by induction
on dimA. If dimA = 0, then A is a field, hence is factorial. Assume that dimA > 0.
Then we can find x ∈ m−m2.
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Let q be a prime of height one in A[x−1]. We have dimA[x−1] < dimA, since any
chain of primes in A[x−1] gives rise to chain in Spec(A) − {m}, which can always be
strictly enlarged by adding m. Let p ∈ Spec(A[x−1]). Then the ring B = (A[x−1])p
coincides with the localisation of the ring A at the prime p ∩ A, hence is a regular local
ring by Corollary 9.2.2. Since dimB ≤ dimA[x−1] < dimA, we know that B is factorial
by induction. The ideal qB of B is either the unit ideal (if q 6⊂ p) or a prime of height
one (if q ⊂ p). In any case, this ideal is principal, and by Lemma 10.1.1 it follows that q
is a locally free A[x−1]-module of rank one.

There is an ideal q′ of A such that q = q′A[x−1]. By Theorem 9.2.1, we can find a
finite resolution by finitely generated free modules of the A-module q′. Tensoring with
A[x−1], we obtain finite resolution by finitely generated free modules of the A[x−1]-module
q′⊗A A[x−1] = q. Since the A[x−1]-module q is projective Proposition 10.1.4, it is stably
free by Lemma 10.1.6, and thus free of rank one by Proposition 10.2.6. In other words,
the ideal q of A[x−1] is principal. It follows from Lemma 10.3.4 that the ring A[x−1]
is factorial. The ring A/xA is regular by Lemma 3.2.4, hence an integral domain by
Proposition 3.2.6. It follows xA is a prime ideal of A, and we conclude that A is factorial
using Lemma 10.3.7. �
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Verlag, Berlin, 2007. Reprint of the 1998 original.

[Mat89] Hideyuki Matsumura. Commutative ring theory, volume 8 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, second edition, 1989. Translated from

the Japanese by M. Reid.

[Ser00] Jean-Pierre Serre. Local algebra. Springer Monographs in Mathematics. Springer-Verlag, Berlin,
2000. Translated from the French by CheeWhye Chin and revised by the author.


	Chapter 1. Associated primes
	1. Support of a module
	2. Associated primes
	3. Support and associated primes

	Chapter 2. Krull dimension
	1. Dimension of a module
	2. Length of a module
	3. Principal ideal Theorem
	4. Flat base change

	Chapter 3. Systems of parameters
	1. Alternative definition of the dimension
	2. Regular local rings

	Chapter 4. Tor and Ext
	1. Chain complexes
	2. Projective Resolutions
	3. The Tor functor
	4. Cochain complexes
	5. The Ext functor

	Chapter 5. Depth
	1. M-regular sequences
	2. Depth
	3. Depth and base change

	Chapter 6. Cohen-Macaulay modules
	1. Cohen-Macaulay modules
	2. Cohen-Macaulay rings
	3. Catenary rings

	Chapter 7. Normal rings
	1. Reduced rings
	2. Locally integral rings
	3. Normal rings

	Chapter 8. Projective dimension
	1. Projective dimension over a local ring
	2. The Auslander-Buchsbaum formula

	Chapter 9. Regular rings
	1. Homological dimension
	2. Regular rings

	Chapter 10. Factorial rings
	1. Locally free modules
	2. The exterior algebra
	3. Factorial rings

	Bibliography

